
1

1

CSE 421: Intro to

Algorithms

Winter 2004

Graph Algorithms:
BFS, DFS, Articulation Points

Larry Ruzzo
2

Breadth-First Search

• Completely explore the vertices
in order of their distance from v

• Naturally implemented using a queue

• Works on general graphs, not just trees

3

BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)

mark v "discovered"
queue = v
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u completed

Exercise: modify
code to number
vertices & compute
level numbers

4

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

5

BFS analysis

• Each edge is explored once from each
end-point

• Each vertex is discovered by following a
different edge

• Total cost O(m) where m=# of edges

• Disconnected? Restart @ undiscovered vertices: O(m+n)

6

Properties of (Undirected) BFS(v)

• BFS(v) visits x if and only if there is a path in G
from v to x.

• Edges into then-undiscovered vertices define a
tree – the "breadth first spanning tree" of G

• Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree) from
the root v is of length i.

• All non-tree edges join vertices on the same or
adjacent levels

2

7

BFS Application: Shortest Paths

1

2
3

10

5

4

9

12

8

13

6
7

11

0

1

2

3

4
can label by distances from start

Tree gives shortest
paths from start vertex

8

Depth-First Search

• Follow the first path you find as far as you
can go

• Back up to last unexplored edge when you
reach a dead end, then go as far you can

• Naturally implemented using recursive
calls or a stack

• Works on general graphs, not just trees

9

DFS(v) – Recursive version

Global Initialization:
mark all vertices v "undiscovered” via v.dfs# = -1
dfscounter = 0

DFS(v)
v.dfs# = dfscounter++ // mark v “discovered”
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously undiscovered)

DFS(x)
else … // code for back-, fwd-, parent,

// edges, if needed
// mark v “completed,” if needed 10

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

11

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13

12

Properties of (Undirected) DFS(v)

• Like BFS(v):
– DFS(v) visits x ⇔ there is a path in G from v to x

– Edges into then-undiscovered vertices define a tree –
the "depth first spanning tree" of G

• Unlike the BFS tree:
– the DF spanning tree isn't minimum depth

– its levels don't reflect min distance from the root

– non-tree edges never join vertices on the same or
adjacent levels

• BUT…

3

13

Non-tree edges

• All non-tree edges join a vertex and one of
its descendents/ancestors in the DFS tree

• Called back/forward edges (depending on end)

• No cross edges!

14

Application: Articulation Points

• A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

• articulation points represent vulnerabilities
in a network – single points whose failure
would split the network into 2 or more
disconnected components

15

Articulation Points

1

2
10

9

8

3

7

6

4

5

11
12

13

16

Exercise

• draw a graph, ~ 10 nodes, A-J
• redraw as via DFS
• add dsf#s & tree/back edges (solid/dashed)
• find cycles
• give alg to find cycles via dfs; does G have any?

• find articulation points
• what do cycles have to do with articulation

points?
• alg to find articulation points via DFS???

17

Articulation Points from DFS

• Root node is an
articulation point
iff it has more
than one child

• Leaf is never an
articulation
point

•

u
x

If removal of u
does NOT
separate x,
there must be
an exit from
x's subtree.
How? Via back
edge.

no non-tree edge goes
above u from a sub-tree
below some child of u

non-leaf, non-root
node u is an
articulation point

⇔

18

Articulation Points:
the "LOW" function

• Definition: LOW(v) is the lowest dfs# of
any vertex that is either in the dfs subtree
rooted at v (including v itself) or connected
to a vertex in that subtree by a back edge.

• Key idea 1: if some child x of v has LOW(x) ≥
dfs#(v) then v is an articulation point.

• Key idea 2: LOW(v) =
 min ({LOW(w) | w a child of v } ∪
 { dfs#(x) | {v,x} is a back edge from v })

trivial

4

19

Properties of
DFS Vertex Numbering

• If u is an ancestor of v in the DFS tree,

then
 ?
 dfs#(u) dfs#(v).

20

DFS(v) for
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.
DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# // initialization
for each edge {v,x}

if (x.dfs# == -1) // x is undiscovered
DFS(x)
v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print “v is art. pt., separating x”
else if (x is not v’s parent)

v.low = min(v.low, x.dfs#)

Equiv: “if({v,x}
is a back edge)”
Why?

Except for root. W
hy?

21

Articulation Points
A

B

HG

E

C

K

I

D

F

J
L

M

Vertex DFS # Low
A
B
C
D
E
F
G
H
I
J
K
L
M

22

Articulation Points
A

B

HG

E

C

K

I

D

F

J
L

M

1

13

12

7

11
6

10
95

84

3

2 Vertex DFS # Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
I 6 3
J 11 10
K 7 3
L 12 10
M 13 13

