
1

21

Matrix-chain Products

• Given: pi-1 x pi matrices Ai , 1 ≤ i ≤ n
• Problem: Compute A1•A2• … •An

=3

4

20
3

4

Strassen

20
In general:
p × q times q × r
costs p*q*r

Work = 3 * 20 * 4

22

Matrix-chain Products

• Given: pi-1 x pi matrices Ai , 1 ≤ i ≤ n
• Problem: Compute A1•A2• … •An

• In What Order?
• Example: A•B•C, where:
• A is 1 x 10 (A • B) • C A • (B • C)
• B is 10 x 2 1*10*2 + 1*2*10 1*10*10 + 10*2*10
• C is 2 x 10 40 300

23

A Greedy Algorithm?

In above example,
it was best to start
with the cheapest
adjacent pair.

Always true?

No.

18

24

36

24

[3x2]• • [3x4][2x3]

54

48

24

Simple Algorithm

• Just try all possible parenthesizations
• How many are there?

 P(1) = 1

 P(n) =



€

P(k)P(n − k)
k=1

n−1
∑ ,n >1

€

P(n) =
1
n
2n − 2
n −1









 =Ω

n
4
3/2n




 




 

25

Repeated Subproblems

• All 5 Parenthesizations of A1•A2•A3•A4:

1

1

1

1

1

2

2

2 2

2

3

3 3

3

3

4

4

4
4

4

26

Optimal Substructure:

• Theorem: if the last multiply is
(A1…Ai)•(Ai+1…An), then A1…Ai is
optimally parenthesized, as is Ai+1…An.

 Proof: Could improve if not.

• Useful? Two problems:
 Don’t know i.
 (A1…Ai) is a prefix of input, but not (Ai+1…An)

2

27

Optimal Substructure:
Strengthened Induction Hyp.

• Theorem: if the last mult in opt calculation
of Ai…Aj is (Ai…Ak)•(Ak+1…Aj), then Ai…Ak
is optimally parenthesized, as is Ak+1…Aj.

 Proof: Could improve if not.

• Let M[i,j] = min ops to multiply Ai…Aj

€

M[i,j] =
0 i = j

i≤k< jmin (M [i,k]+M [k +1, j]+

 pi−1pk pj)
i < j






 






 
28

// Goal: M[i,j] = min ops to multiply Ai…Aj

for j := 1 to n do
M[j,j] := 0;
for i := (j - 1) downto 1 do

M[i,j] := mini≤k<j(pi-1pkpj +
M[i,k]+M[k+1,j]);

An O(n3) Algorithm

i \ j

k

29

Example:

 A1: 2x3
A2: 3x1
A3: 1x5
A4: 5x1

1

2

3

4

1 2 3 4 p0 = 2
p1 = 3
p2 = 1
p3 = 5
p4 = 1

30

Notes

• Diagonal M[i,i+2], e.g., gives best cost for
multiplying adjacent triples AiAi+1Ai+2
 Exercise: rewrite alg to compute successive

diagonals instead of successive columns
 Question: can it be rewritten to compute successive

rows?
• n3 → n log n time is possible (but not easy)
• General structure of algorithm is useful for other

problems on trees
 E.g., go look up “CKY” alg for context-free parsing

