
1

1

CSE 421
Intro to Algorithms
Summer 2004

Huffman Codes:
An Optimal Data Compression

Method

CSE 421, Su’04, Ruzzo 2

CSE 421, Su’04, Ruzzo 3 CSE 421, Su’04, Ruzzo 4

Data Compression

 Binary character code (“code”)
 each k-bit source string maps to unique code word

(e.g. k=8)
 “compression” alg: concatenate code words for

successive k-bit “characters” of source

 Fixed/variable length codes
 all code words equal length?

 Prefix codes
 no code word is prefix of another (simplifies

decoding)

CSE 421, Su’04, Ruzzo 5

Compression Example

 100k file, 6 letter alphabet:

 File Size:
 ASCII, 8 bits/char: 800kbits
 23 > 6; 3 bits/char: 300kbits
 00,01,10 for a,b,d; 11xx for c,e,f:

2.52 bits/char 74%*2 +26%*4: 252kbits
 Optimal?

 Why?
 Storage, transmission vs 1Ghz cpu

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

Prefix Codes
= Trees

1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1

 f a b f a b

2

CSE 421, Su’04, Ruzzo 7

Greedy Idea #1

 Put most frequent
under root, then
recurse …

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45

100

 .
 . .
. .

CSE 421, Su’04, Ruzzo 8

Greedy Idea #1

 Put most frequent
under root, then
recurse …

 Too greedy:
unbalanced tree

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45

100

d:16

55

b:13

29

.
 .
 .

CSE 421, Su’04, Ruzzo 9

Greedy idea #2

 Group least frequent
letters near bottom

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

100

f:5

14

.
 .
 .

e:9

c:12

25

b:13

 .
 .
.

CSE 421, Su’04, Ruzzo 12

Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq

while queue length > 1 do
remove smallest 2; call them x, y
make new node z from them, with f(z) = f(x)+f(y)
insert z into queue

Analysis: O(n) heap ops: O(n log n)

Goal: Minimize

Correctness: ???

€

B(T) = freq(c)*depth(c)
c∈C∑

3

CSE 421, Su’04, Ruzzo 13

Correctness Strategy

 Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer.

 Instead, show that greedy’s solution is
as good as any.

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more
frequent letter the shorter code.

 before after

I.e. non-negative cost savings.

Defn: A pair of leaves is an inversion if

 depth(x) ≥ depth(y)

and

 freq(x) ≥ freq(y)

(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) =

(d(x) - d(y)) * (f(x) - f(y)) ≥ 0

CSE 421, Su’04, Ruzzo 15

The 2 least frequent letters might
as well be siblings at deepest level

 Let a be least freq, b 2nd

 Let u, v be siblings at
max depth, f(u) ≤ f(v)

 Then (a,u) and (b,v) are
inversions. Swap them.

Lemma 1:
“Greedy Choice Property”

CSE 421, Su’04, Ruzzo 16

Let (C, f) be a problem instance: C an n-letter alphabet
with letter frequencies f(c) for c in C.

For any x, y in C, let C’ be the (n-1) letter alphabet
C - {x,y} ∪ {z} and for all c in C’ define

Let T’ be an optimal tree for (C’,f’).
Then

is optimal for (C,f) among all trees having x,y as siblings

Lemma 2:
“Optimal Substructure”

zciff(y),f(x)

zy,x,ciff(c),
(c)f'

=+

≠





=

T’

x y
zT

=

)('

)(')()(')1)((

)(')())()(()()'()(

)()()(

''

'

zf

zfzdzfzd

zfzdyfxfxdTBTB

cfcdTB

TT

TT

Cc T

=

⋅−⋅+=

⋅−+⋅=−

⋅=∑ ∈

Proof:

Suppose (having x & y as siblings) is better than T, i.e.

 Collapse x & y to z, forming ; as above:

Then:

Contradicting optimality of T’

'T̂

)'()(')()(')ˆ()'ˆ(

)(')'ˆ()ˆ(

TBzfTBzfTBTB

zfTBTB

=−<−=

=−

T̂

€

B(ˆ T) < B(T).

CSE 421, Su’04, Ruzzo 18

Theorem:
Huffman gives optimal codes

Proof: induction on |C|
 Basis: n=1,2 – immediate
 Induction: n>2

 Let x,y be least frequent
 Form C’, f’, & z, as above
 By induction, T’ is opt for (C’,f’)
 By lemma 2, T’→T is opt for (C,f) among trees
with x,y as siblings

 By lemma 1, some opt tree has x, y as siblings
 Therefore, T is optimal.

4

CSE 421, Su’04, Ruzzo 19

Data Compression

 Huffman is optimal.
 BUT still might do better!

 Huffman encodes fixed length blocks. What if we
vary them?

 Huffman uses one encoding throughout a file.
What if characteristics change?

 What if data has structure? E.g. raster images,
video,…

 Huffman is lossless. Necessary?

 LZW, MPEG, …

