
1

1

CSE 421
Intro to Algorithms
Summer 2004

Huffman Codes:
An Optimal Data Compression

Method

CSE 421, Su’04, Ruzzo 2

CSE 421, Su’04, Ruzzo 3 CSE 421, Su’04, Ruzzo 4

Data Compression

 Binary character code (“code”)
 each k-bit source string maps to unique code word

(e.g. k=8)
 “compression” alg: concatenate code words for

successive k-bit “characters” of source

 Fixed/variable length codes
 all code words equal length?

 Prefix codes
 no code word is prefix of another (simplifies

decoding)

CSE 421, Su’04, Ruzzo 5

Compression Example

 100k file, 6 letter alphabet:

 File Size:
 ASCII, 8 bits/char: 800kbits
 23 > 6; 3 bits/char: 300kbits
 00,01,10 for a,b,d; 11xx for c,e,f:

2.52 bits/char 74%*2 +26%*4: 252kbits
 Optimal?

 Why?
 Storage, transmission vs 1Ghz cpu

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

Prefix Codes
= Trees

1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1

 f a b f a b

2

CSE 421, Su’04, Ruzzo 7

Greedy Idea #1

 Put most frequent
under root, then
recurse …

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45

100

 .
 . .
. .

CSE 421, Su’04, Ruzzo 8

Greedy Idea #1

 Put most frequent
under root, then
recurse …

 Too greedy:
unbalanced tree

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45

100

d:16

55

b:13

29

.
 .
 .

CSE 421, Su’04, Ruzzo 9

Greedy idea #2

 Group least frequent
letters near bottom

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

100

f:5

14

.
 .
 .

e:9

c:12

25

b:13

 .
 .
.

CSE 421, Su’04, Ruzzo 12

Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq

while queue length > 1 do
remove smallest 2; call them x, y
make new node z from them, with f(z) = f(x)+f(y)
insert z into queue

Analysis: O(n) heap ops: O(n log n)

Goal: Minimize

Correctness: ???

€

B(T) = freq(c)*depth(c)
c∈C∑

3

CSE 421, Su’04, Ruzzo 13

Correctness Strategy

 Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer.

 Instead, show that greedy’s solution is
as good as any.

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more
frequent letter the shorter code.

 before after

I.e. non-negative cost savings.

Defn: A pair of leaves is an inversion if

 depth(x) ≥ depth(y)

and

 freq(x) ≥ freq(y)

(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) =

(d(x) - d(y)) * (f(x) - f(y)) ≥ 0

CSE 421, Su’04, Ruzzo 15

The 2 least frequent letters might
as well be siblings at deepest level

 Let a be least freq, b 2nd

 Let u, v be siblings at
max depth, f(u) ≤ f(v)

 Then (a,u) and (b,v) are
inversions. Swap them.

Lemma 1:
“Greedy Choice Property”

CSE 421, Su’04, Ruzzo 16

Let (C, f) be a problem instance: C an n-letter alphabet
with letter frequencies f(c) for c in C.

For any x, y in C, let C’ be the (n-1) letter alphabet
C - {x,y} ∪ {z} and for all c in C’ define

Let T’ be an optimal tree for (C’,f’).
Then

is optimal for (C,f) among all trees having x,y as siblings

Lemma 2:
“Optimal Substructure”

zciff(y),f(x)

zy,x,ciff(c),
(c)f'

=+

≠

=

T’

x y
zT

=

)('

)(')()(')1)((

)(')())()(()()'()(

)()()(

''

'

zf

zfzdzfzd

zfzdyfxfxdTBTB

cfcdTB

TT

TT

Cc T

=

⋅−⋅+=

⋅−+⋅=−

⋅=∑ ∈

Proof:

Suppose (having x & y as siblings) is better than T, i.e.

 Collapse x & y to z, forming ; as above:

Then:

Contradicting optimality of T’

'T̂

)'()(')()(')ˆ()'ˆ(

)(')'ˆ()ˆ(

TBzfTBzfTBTB

zfTBTB

=−<−=

=−

T̂

€

B(ˆ T) < B(T).

CSE 421, Su’04, Ruzzo 18

Theorem:
Huffman gives optimal codes

Proof: induction on |C|
 Basis: n=1,2 – immediate
 Induction: n>2

 Let x,y be least frequent
 Form C’, f’, & z, as above
 By induction, T’ is opt for (C’,f’)
 By lemma 2, T’→T is opt for (C,f) among trees
with x,y as siblings

 By lemma 1, some opt tree has x, y as siblings
 Therefore, T is optimal.

4

CSE 421, Su’04, Ruzzo 19

Data Compression

 Huffman is optimal.
 BUT still might do better!

 Huffman encodes fixed length blocks. What if we
vary them?

 Huffman uses one encoding throughout a file.
What if characteristics change?

 What if data has structure? E.g. raster images,
video,…

 Huffman is lossless. Necessary?

 LZW, MPEG, …

