CSE 421: Introduction to Algorithms

Dynamic Programming

"Dynamic Programming"

Program — A plan or procedure for dealing with some matter - Webster's New World Dictionary

2

Dynamic Programming

- Outline:
 - § Example 1 Licking Stamps
 - § General Principles
 - § Example 2 Knapsack (§5.10)
 - § Example 3 Sequence Comparison (§ 6.8)

Licking Stamps

- Given:
 - S Large supply of 5¢, 4¢, and 1¢ stamps
 - § An amount N
- Problem: choose fewest stamps totaling N

4

How to Lick 27¢

# of 5¢	# of 4¢	# of 1¢	Total
Stamps	Stamps	Stamps	Number
5	0	2	7
4	1	3	8
3	3	0	6

Moral: Greed doesn't pay

A Simple Algorithm

• At most N stamps needed, etc.

```
for a = 0, ..., N {
  for b = 0, ..., N {
    for c = 0, ..., N {
      if (5a+4b+c == N && a+b+c is new min)
          {retain (a,b,c);}}}
output retained triple;
```

• Time: O(N³) (Not too hard to see some optimizations, but we're after bigger fish...)

6

Better Idea

<u>Theorem:</u> If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for N-v.

<u>Proof:</u> if not, we could improve the solution for N by using opt for N-v.

$$M(i) = \min \begin{cases} 0 & i=0\\ 1+M(i-5) & i \ge 5\\ 1+M(i-4) & i \ge 4\\ 1+M(i-1) & i \ge 1 \end{cases}$$

where M(i) = min number of stamps totaling $i\phi$

New Idea: Recursion $M(i) = \min \begin{cases} 0 & i = 0 \\ 1+M(i-5) & i \ge 5 \\ 1+M(i-4) & i \ge 4 \\ 1+M(i-1) & i \ge 1 \end{cases}$ 27
22
23
26
17 18 21 18 19 22 21 22 25
...
...
...
Time: > $3^{N/5}$

Another New Idea: Avoid Recomputation

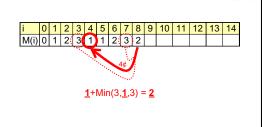
- Tabulate values of solved subproblems
 - § Top-down: "memoization"
 - § Bottom up:

for i = 0, ..., N do
$$M[i] = \min \begin{cases} 0 & i=0 \\ 1+M[i-5] & i\geq5 \\ 1+M[i-4] & i\geq4 \\ 1+M[i-1] & i\geq1 \end{cases}$$

• Time: O(N)

Finding How Many Stamps | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | M(i) | 0 | 1 | 2 | 3 | 1 | 1 | 2 | 3 | 2 | | 1+Min(3,1,3) = 2

Finding Which Stamps: Trace-Back



Complexity Note

- O(N) is better than O(N³) or O(3^{N/5})
- But still exponential in input size (log N bits)

(E.g., miserably slow if N is 64 bits – c·2⁶⁴ steps for 64 bit input.)

 Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in general. See "NP-Completeness" later

12

Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?
- "Optimal Substructure"

Optimal solution contains optimal subproblems

"Repeated Subproblems"

The same subproblems arise in various ways

The Knapsack Problem (§ 5.10)

Given positive integers W, w₁, w₂, ..., w_n Find a subset of the wi's totaling exactly W. Alternate (Easier?) Problem: Is there one?

(Like stamp problem, but limited supply of each.)

Motivation: simple 1-d abstraction of packing boxes, trucks, VLSI chips, ...

Knapsack **Example**

 $w_1, ..., w_4 = 2, 5, 9, 11$

• W = 14

§ YES: 5+9 = 14

• W = 15

§ NO:

all singletons 11: too small all pairs too small, except

9+11, 5+11 too bia s all triples 16: too big

s all quadruples: too big

2ⁿ possibilities

Solve by Induction? Try 1

- Defn: Let P(i) be true iff there is a subset of first i weights W₁, W₂, ..., W_i totaling W
- Assume we know how to evaluate P(n-1)
 - S Case 1: P(n-1) = True done; w_n unneeded
 - S Case 2: P(n-1) = False may or may not be a solution, but if there is one, it includes w_n, and other included weights total W-w_n,

but I.H. doesn't tell us how to find it.

Solve by Induction? Try 2

- Defn: Let P(i, X) be true iff there is a subset of first i weights W₁, W₂, ..., W_i totaling X
- Assume we know P(n-1, X) for all X
 - S Case 1: P(n-1, W) = True done; w_n unneeded
 - S Case 2: P(n-1, W) = False may or may not be a solution, but if there is one, it *in*cludes w_n , and other weights total W- w_n , so P(n, W) = P(n-1, W- w_n)
- - $P(n,W) = P(n-1, W) \vee (P(n-1, W-w_n)) \text{ if } W-w_n \neq 0$
 - § Basis: P(0, X) = True iff (X == 0)

Knapsack $P(n,W) = P(n-1, W) \vee P(n-1, W-w_n)$ **Example** $w_1, ..., w_4 = 2, 5, 9, 11$ W=15 i\X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 3 1 0 1 0 0 1 0 1 0 1 0 1 0 0 W = 14: Yes W = 15: No

Dynamic Programming?

 $P(n,W) = P(n-1, W) \vee P(n-1, W-w_n)$

- Optimal substructure? Best/only way to fill a big knapsack implicitly fills smaller ones with fewer objects in the best or only way
- Repeated subproblems? Smallest cases potentially common to many bigger instances

Complexity Notes

- Time is O(N W)
- May or may not beat naïve 2^N
- But still partially exponential in input size (N log W bits)

 - E.g., 100 weights, 64 bits each 100 2⁶⁴ array elements.
 C.v., e.g., Skyline 100 bldgs, 64 bit coords c 100 log 100 steps.
- See "NP-Completeness" later