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CSE 421
Introduction to Algorithms

Depth First Search and
Strongly Connected Components

W.L. Ruzzo, Summer 2004
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Undirected
Depth-First Search

 It’s not just for trees

DFS(v)
if v marked then return;
mark v; #v := ++count;
for all edges (v,w) do DFS(w);

Main()
count := 0;
for all unmarked v do DFS(v);
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Undirected
Depth-First Search

 Key Properties:
1. No “cross-edges”;

only tree- or back-edges

2. Before returning, DFS(v)
visits all vertices reachable
from v via paths through
previously unvisited
vertices
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 Algorithm: Unchanged
 Key Properties:

2. Unchanged
1’. Edge (v,w) is:

Tree-edge if w unvisited
Back-edge if w visited, #w<#v, on stack
Cross-edge if w visited, #w<#v, not on stack
Forward-edge if w visited, #w>#v

Note: Cross edges only go “Right” to “Left”

Directed Depth First Search

As
before

New
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An Application:

G has a cycle ⇔ DFS finds a back edge
⇐ Easy - back edge (x,y) plus tree edges y,

…, x form  a cycle.
 ⇒ Why can’t we have something like this?:
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Lemma 1

Before returning,  dfs(v) visits w iff
– w is unvisited
– w is reachable from v via a path through

unvisited vertices

Proof:
– dfs follows all direct out-edges
– call dfs recursively at each unvisited one
– by induction on path length, visits all
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Strongly Connected Components

 Defn: G is strongly connected if for all
u,v there is a (directed) path from u to v
and from v to u.
[Equivalently:

there is a circuit through u and v.]

 Defn: a strongly connected component
of G is a maximal strongly connected
(vertex-induced) subgraph.
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Note: collapsed 
graph is a DAG 10

Uses for SCC’s

 Optimizing compilers:
– SCC’s in program flow graph = loops
– SCC’s in call graph = mutual recursion

 Operating Systems: If (u,v) means process u
is waiting for process v, SCC’s  show
deadlocks.

 Econometrics: SCC’s might show highly
interdependent sectors of the economy.

 Etc.
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Directed Acyclic Graphs

 If we collapse each SCC to a
single vertex we get a directed
graph with no cycles
– a directed acyclic graph or DAG

 Many problems on directed
graphs can be solved as follows:
– Compute SCC’s and resulting DAG
– Do one computation on each SCC

– Do another on the overall DAG
– Example: Spreadsheet evaluation
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Two Simple SCC Algorithms

• u,v in same SCC iff there are
paths u → v & v → u

• Transitive closure: O(n3)

• DFS from every u, v: O(ne) = O(n3)
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Goal:

 Find all Strongly Connected
Components in linear time,
i.e., time O(n+e)

(Tarjan, 1972)
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Definition

The root of an SCC is the first vertex in
it visited by DFS.

Equivalently, the root is the vertex in the
SCC with the smallest DFS number.
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Lemma 2

All members of an SCC are
descendants of its root.

Proof:
– all members are reachable from all others
– so, all are reachable from its root
– all are unvisited when root is visited
– so, all are descendants of its root (Lemma 1)

Exercise: show
that each SCC is
a contiguous
subtree.
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Subgoal

 Can we identify some root?

 How about the root of the first SCC
completely explored (returned from)
by DFS?

 Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)
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Definition

x is an exit from v (from v’s subtree) if
– x is not a descendant of v, but
– x is the head of a (cross- or back-) edge

from a descendant of v (including v itself)

NOTE:  #x < #v

Ex: node #1 cannot have an exit.

v
x
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# root exits
1 1 -
2 2 -
3 3 -
4, 5 3 3
6 3 3, 5
7 3 5
8, 9 3 7
10 10 2, 8
11, 12 10 10
13 13 -
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Lemma 3:
Nonroots have exits

If v is not a root, then v has an exit.

Proof:
– let r be root of v’s SCC
– r is a proper ancestor of v (Lemma 2)

– let x be the first vertex that is not a
descendant of v on a path v → r .

– x is an exit

Cor (contrapositive): If v has no exit, then v is a root.
NB: converse not true; some roots do have exits
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Lemma 4:
No Escaping 1st Root

If r is the first root from which dfs returns, then r
has no exit

Proof (by contradiction):
– Suppose x is an exit
– let z be root of x’s SCC
– r not reachable from z, else in same SCC
– #z ≤ #x (z ancestor of x; Lemma 2)
– #x < #r (x is an exit from r)
– #z < #r, no z → r path, so return from z first
– Contradiction
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 All exits x from v have #x < #v
 Suffices to find any of them, e.g. min #
 Defn:

LOW(v) = min({ #x | x an exit from v} ∪ {#v})
 Calculate inductively:

LOW(v) = min of:
– #v
– { LOW(w) | w a child of v }
– { #x | (v,x) is a back- or cross-edge }

 1st root : LOW(v)=v

How to Find Exits (in 1st component)

w1 w2 w3

x1

x2
v
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# root exits LOW
1 1 -
2 2 -
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8
11, 12 10 10
13 13 -

1st root:
LOW(v)=v
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Finding Other Components

 Key idea: No exit from
– 1st SCC

– 2nd SCC, except maybe to 1st

– 3rd SCC, except maybe to 1st and/or 2nd

– ...
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Lemma 3’

If v is not a root, then v has an exit  .

Proof:
– let r be root of v’s SCC

– r is a proper ancestor of v (Lemma 2)
– let x be the first vertex that is not a

descendant of v on a path v → r .

– x is an exit

Cor: If v has no exit , then v is a root.

v

x

r

in v’s SCC

in v’s SCC

in v’s SCC
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If r is the first root from which dfs
returns, then r has no exit

Proof:
– Suppose x is an exit
– let z be root of x’s SCC
– r not reachable from z, else in same SCC
– #z ≤ #x (z ancestor of x; Lemma 2)
– #x < #r (x is an exit from r)
– #z < #r, no z → r path, so return from z first
– Contradiction

except possibly 
to the first (k-1) 
components

Lemma 4’
kth

i.e., x in first (k-1)

r
x

z ?
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How to Find Exits (in 1st component)

 All exits x from v have #x < #v

 Suffices to find any of them, e.g. min #

 Defn:
LOW(v) = min({ #x | x an exit from v } ∪ {#v})

 Calculate inductively:
LOW(v) = min of:
– #v

– { LOW(w) | w a child of v }
– { #x | (v,x) is a back- or cross-edge }

kth

and x not in first 
(k-1) components
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SCC Algorithm

SCC(v)
#v = vertex_number++; v.low = #v; push(v)
for all edges (v,w)

if #w == 0 then
SCC(w); v.low = min(v.low, w.low) // tree edge

else if #w < #v && w.scc == 0 then
v.low = min(v.low, #w)       // cross- or back-edge

if #v == v.low then          // v is root of new scc
scc#++;
repeat

w = pop(); w.scc = scc#;    // mark SCC members
until w==v

#v = DFS number
v.low = LOW(v)
v.scc = component #
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# root exits LOW
1 1 - 1
2 2 - 2
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8 10
11, 12 10 10 10
13 13 - 13
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Complexity

 Look at every edge once

 Look at every vertex (except via in-
edge) at most once

 Time = O(n+e)
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Where to start

 Unlike undirected DFS, start vertex matters

 Add “outer loop”:

mark all vertices unvisited
while there is unvisited vertex v do

scc(v)

 Exercise: redo example starting from another
vertex, e.g. #11 or #13 (which become #1)
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Example

A

FE

CB D

1
2
3
4
5
6

dfs#     v root  exits low(v)
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Example
    v Low(v)     v Low(v)


