CSE 421
Introduction to Algorithms

Depth First Search and
Strongly Connected Components

W.L. Ruzzo, Summer 2004

Undirected
Depth-First Search

m It's not just for trees

DFS (v) @
back fif v marked then return; é/\{\

=y
edge nark v; #v o= ++count @)
t
ersgee for all edges (v,w) do DFES (w) ;

— NB: book

- uses
count := 0; «~ decreasing

Main ()

for all unmarked v do DFS(v);

Undirected & —®
Depth-First Search \ /
m Key Properties:
1. No “cross-edges”; @

\

only tree- or back-edges g
\

2. Before returning, DFS(v) /
visits all vertices reachab

from v via paths through \C
previously unvisited K o

vertices

Directed Depth First Search

m Algorithm: Unchanged
m Key Properties:
2. Unchanged
1. Edge (v,w) is:
As{ Tree-edge if w unvisited
before Back-edge if w visited, #w<#v, on stack

Cross-edge if w visited, #w<#v, not on stack
Forward-edge if w visited, #w>#v

New {

Note: Cross edges only go “Right” to “Left”

An Application:

G has a cycle « DFS finds a back edge
< Easy - back edge (x,y) plus tree edges vy,

., x form a cycle.
=> Why can’t we have something like this?:

Lemma 1

Before returning, dfs(v) visits w iff
— W is unvisited

—w is reachable from v via a path through
unvisited vertices

Proof:
— dfs follows all direct out-edges
— call dfs recursively at each unvisited one
— by induction on path length, visits all

Strongly Connected Components

m Defn: G is strongly connected if for all
u,v there is a (directed) path fromu to v
and from v to u.

[Equivalently:
there is a circuit through u and v.]

m Defn: a strongly connected component
of G is a maximal strongly connected
(vertex-induced) subgraph.

AN
[®
@/@ @
Ny

Note: collapsed
graph is a DAG

9

Uses for SCC’s

m Optimizing compilers:
— SCC'’s in program flow graph = loops
— SCC'’s in call graph = mutual recursion

m Operating Systems: If (u,v) means process u
is waiting for process v, SCC’s show
deadlocks.

m Econometrics: SCC’s might show highly
interdependent sectors of the economy.

m Etc.

Directed Acyclic Graphs

m If we collapse each SCC to a
single vertex we get a directed
graph with no cycles

— adirected acyclic graph or DAG
= Many problems on directed
graphs can be solved as follows:
— Compute SCC'’s and resulting DAG
— Do one computation on each SCC
— Do another on the overall DAG
— Example: Spreadsheet evaluation

Two Simple SCC Algorithms

- u,vin same SCC iff there are
pathsu - v &v —u

- Transitive closure: O(n3)

- DFS from every u, v: O(ne) = O(n3)

Goal:

m Find all Strongly Connected
Components in linear time,
i.e., time O(n+e)

(Tarjan, 1972)

Definition

The root of an SCC is the first vertex in
it visited by DFS.

Equivalently, the root is the vertex in the
SCC with the smallest DFS number.

Exercise: show

L 2 that each SCC is
cmma a contiguous

subtree.

All members of an SCC are
descendants of its root.

Proof:
—all members are reachable from all others
—s0, all are reachable from its root
— all are unvisited when root is visited
—so0, all are descendants of its root (Lemma 1)

15

Subgoal

m Can we identify some root?

= How about the root of the first SCC
completely explored (returned from)
by DFS?

m Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)

\"
Definition X"‘A

x is an exit from v (from v’s subtree) if
— X is not a descendant of v, but

—x is the head of a (cross- or back-) edge
from a descendant of v (including v itself)

NOTE: #x < #v

Ex: node #1 cannot have an exit.

| Nonroots have exits

‘ Idea: Follow cycle to root

Lemma 3:

If v is not a root, then v has an exit.
Proof:

— let r be root of v’'s SCC

— ris a proper ancestor of v (Lemma 2)

— let x be the first vertex that is not a
descendant of von a pathv —r.

— x is an exit

Cor (contrapositive): If v has no exit, then v is a root.
NB: converse not true; some roots do have exits

~ No Escaping 1st Root

‘ Idea: Exit = Bigger Cycle

?
Lemma 4: r

A\

If r is the first root from which dfs returns, then r
has no exit
Proof (by contradiction):
— Suppose x is an exit
— let z be root of x's SCC
— r not reachable from z, else in same SCC
— #z < #x (z ancestor of x; Lemma 2)
— #x < #r (x is an exit from r)
— #z < #r, no z — r path, so return from z first
— Contradiction

20

How to Find Exits (in 15 component)

m All exits x from v have #x < #v
m Suffices to find any of them, e.g. min #
m Defn:

LOW(v) = min({ #x | x an exit from v} U {#v})
m Calculate inductively:

LOW(v) = min of: X%

—#v Xy 047

— {LOW(w) | w a child of v}

— {#x| (v,x) is a back- or cross-edge } - »
= 1stroot : LOW(v)=v

21

exits

1st root:

3
3
5|3 LOW(v)=v
5
7

=

22

s

Copanwa [

Finding Other Components

m Key idea: No exit from
—1stSCC
—2nd SCC, except maybe to 1st
— 314 SCC, except maybe to 1st and/or 2nd

23

Lemma 3’

If v is not a root, then v has an exit ..
Proof:

—letr be root of v's SCC

—ris a proper ancestor of v (Lemma 2)

— let x be the first vertex that is not a
descendant of vonapathv —r.

— X is an exit

Cor: If v has no exiii, then v is a root.

?
Lemma 4’

If ris the ’Fn%l;root from which dfs
returns, then r has no exit
Proof:

except possibly
— Suppose x is an exit to the first (k-1)
—let z be root of xX's SCC | components
—r not reachable from z, else in same SCC
—#z < #x (z ancestor of x; Lemma 2)

—#x < #r (x is an exit fromr)

—#z < #r, no z — r path, so return from z first

—Seatadiction — S st (k)] =

How to Find Exits (inT{‘;component)

m All exits x from v have #x < #v
m Suffices to find any of them, e.g. min #
m Defn:
LOW(v) = min({ #x | x an exit from v } U {#v})
m Calculate inductively:
LOW(v) = min of:
—#v
— { LOW(w) | w a child of v }
— {#x| (v,x) is a back- or cross-edge

and x not in first
(k-1) components

26

SCC Algorlthm #v = DFS number
v.low = LOW(v)
v.scc = component #

SCC(v)
#v = vertex_number++; v.low = #v; push(v)
for all edges (v,w)
if #w == 0 then
SCC(w); v.low = min(v.low, w.low) // tree edge
else if #w < #v && w.scc == 0 then
v.low = min(v.low, #w) /I cross- or back-edge
if #v == v.low then /I v is root of new scc
SCCH++;
repeat
w = pop(); w.scc = scc#; // mark SCC members
until w==v
27

exits

Pu s

=
s

28

s
s

Complexity

m Look at every edge once

m Look at every vertex (except via in-
edge) at most once

m Time = O(n+e)

29

Where to start

m Unlike undirected DFS, start vertex matters
= Add “outer loop™:

mark all vertices unvisited
while there is unvisited vertex v do
scc(v)

m Exercise: redo example starting from another
vertex, e.g. #11 or #13 (which become #1)

Example Example ()

N 4\ oot oxislony - %
S| 5
IR

a

o oD N =G

