
1

1

CSE 421
Introduction to Algorithms

Depth First Search and
Strongly Connected Components

W.L. Ruzzo, Summer 2004

2

Undirected
Depth-First Search

 It’s not just for trees

DFS(v)
if v marked then return;
mark v; #v := ++count;
for all edges (v,w) do DFS(w);

Main()
count := 0;
for all unmarked v do DFS(v);

back
edge

tree
edge

NB: book
uses

decreasing

3

Undirected
Depth-First Search

 Key Properties:
1. No “cross-edges”;

only tree- or back-edges

2. Before returning, DFS(v)
visits all vertices reachable
from v via paths through
previously unvisited
vertices

4

 Algorithm: Unchanged
 Key Properties:

2. Unchanged
1’. Edge (v,w) is:

Tree-edge if w unvisited
Back-edge if w visited, #w<#v, on stack
Cross-edge if w visited, #w<#v, not on stack
Forward-edge if w visited, #w>#v

Note: Cross edges only go “Right” to “Left”

Directed Depth First Search

As
before

New

5

An Application:

G has a cycle ⇔ DFS finds a back edge
⇐ Easy - back edge (x,y) plus tree edges y,

…, x form a cycle.
 ⇒ Why can’t we have something like this?:

6

Lemma 1

Before returning, dfs(v) visits w iff
– w is unvisited
– w is reachable from v via a path through

unvisited vertices

Proof:
– dfs follows all direct out-edges
– call dfs recursively at each unvisited one
– by induction on path length, visits all

2

7

Strongly Connected Components

 Defn: G is strongly connected if for all
u,v there is a (directed) path from u to v
and from v to u.
[Equivalently:

there is a circuit through u and v.]

 Defn: a strongly connected component
of G is a maximal strongly connected
(vertex-induced) subgraph.

8

1

2
10

9

8

3

4

5

6

7

11
12

13

9

1

2
10

9

8

3

4

5

6

7

11
12

13

Note: collapsed
graph is a DAG 10

Uses for SCC’s

 Optimizing compilers:
– SCC’s in program flow graph = loops
– SCC’s in call graph = mutual recursion

 Operating Systems: If (u,v) means process u
is waiting for process v, SCC’s show
deadlocks.

 Econometrics: SCC’s might show highly
interdependent sectors of the economy.

 Etc.

11

Directed Acyclic Graphs

 If we collapse each SCC to a
single vertex we get a directed
graph with no cycles
– a directed acyclic graph or DAG

 Many problems on directed
graphs can be solved as follows:
– Compute SCC’s and resulting DAG
– Do one computation on each SCC

– Do another on the overall DAG
– Example: Spreadsheet evaluation

1

2
10

9

8

3

4

5
6

7

11
12

13

1

2 10-12

3-9 13

12

Two Simple SCC Algorithms

• u,v in same SCC iff there are
paths u → v & v → u

• Transitive closure: O(n3)

• DFS from every u, v: O(ne) = O(n3)

3

13

Goal:

 Find all Strongly Connected
Components in linear time,
i.e., time O(n+e)

(Tarjan, 1972)

14

Definition

The root of an SCC is the first vertex in
it visited by DFS.

Equivalently, the root is the vertex in the
SCC with the smallest DFS number.

15

Lemma 2

All members of an SCC are
descendants of its root.

Proof:
– all members are reachable from all others
– so, all are reachable from its root
– all are unvisited when root is visited
– so, all are descendants of its root (Lemma 1)

Exercise: show
that each SCC is
a contiguous
subtree.

16

Subgoal

 Can we identify some root?

 How about the root of the first SCC
completely explored (returned from)
by DFS?

 Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)

17

Definition

x is an exit from v (from v’s subtree) if
– x is not a descendant of v, but
– x is the head of a (cross- or back-) edge

from a descendant of v (including v itself)

NOTE: #x < #v

Ex: node #1 cannot have an exit.

v
x

18

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits
1 1 -
2 2 -
3 3 -
4, 5 3 3
6 3 3, 5
7 3 5
8, 9 3 7
10 10 2, 8
11, 12 10 10
13 13 -

4

19

Lemma 3:
Nonroots have exits

If v is not a root, then v has an exit.

Proof:
– let r be root of v’s SCC
– r is a proper ancestor of v (Lemma 2)

– let x be the first vertex that is not a
descendant of v on a path v → r .

– x is an exit

Cor (contrapositive): If v has no exit, then v is a root.
NB: converse not true; some roots do have exits

r
v

x

Id
ea

: F
ol

lo
w

 c
yc

le
 t

o
ro

ot

20

Lemma 4:
No Escaping 1st Root

If r is the first root from which dfs returns, then r
has no exit

Proof (by contradiction):
– Suppose x is an exit
– let z be root of x’s SCC
– r not reachable from z, else in same SCC
– #z ≤ #x (z ancestor of x; Lemma 2)
– #x < #r (x is an exit from r)
– #z < #r, no z → r path, so return from z first
– Contradiction

r
x

z ?

Id
ea

: E
xi

t ⇒
 B

ig
ge

r
C

yc
le

21

 All exits x from v have #x < #v
 Suffices to find any of them, e.g. min #
 Defn:

LOW(v) = min({ #x | x an exit from v} ∪ {#v})
 Calculate inductively:

LOW(v) = min of:
– #v
– { LOW(w) | w a child of v }
– { #x | (v,x) is a back- or cross-edge }

 1st root : LOW(v)=v

How to Find Exits (in 1st component)

w1 w2 w3

x1

x2
v

22

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits LOW
1 1 -
2 2 -
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8
11, 12 10 10
13 13 -

1st root:
LOW(v)=v

23

Finding Other Components

 Key idea: No exit from
– 1st SCC

– 2nd SCC, except maybe to 1st

– 3rd SCC, except maybe to 1st and/or 2nd

– ...

24

Lemma 3’

If v is not a root, then v has an exit .

Proof:
– let r be root of v’s SCC

– r is a proper ancestor of v (Lemma 2)
– let x be the first vertex that is not a

descendant of v on a path v → r .

– x is an exit

Cor: If v has no exit , then v is a root.

v

x

r

in v’s SCC

in v’s SCC

in v’s SCC

5

25

If r is the first root from which dfs
returns, then r has no exit

Proof:
– Suppose x is an exit
– let z be root of x’s SCC
– r not reachable from z, else in same SCC
– #z ≤ #x (z ancestor of x; Lemma 2)
– #x < #r (x is an exit from r)
– #z < #r, no z → r path, so return from z first
– Contradiction

except possibly
to the first (k-1)
components

Lemma 4’
kth

i.e., x in first (k-1)

r
x

z ?

26

How to Find Exits (in 1st component)

 All exits x from v have #x < #v

 Suffices to find any of them, e.g. min #

 Defn:
LOW(v) = min({ #x | x an exit from v } ∪ {#v})

 Calculate inductively:
LOW(v) = min of:
– #v

– { LOW(w) | w a child of v }
– { #x | (v,x) is a back- or cross-edge }

kth

and x not in first
(k-1) components

27

SCC Algorithm

SCC(v)
#v = vertex_number++; v.low = #v; push(v)
for all edges (v,w)

if #w == 0 then
SCC(w); v.low = min(v.low, w.low) // tree edge

else if #w < #v && w.scc == 0 then
v.low = min(v.low, #w) // cross- or back-edge

if #v == v.low then // v is root of new scc
scc#++;
repeat

w = pop(); w.scc = scc#; // mark SCC members
until w==v

#v = DFS number
v.low = LOW(v)
v.scc = component #

28

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits LOW
1 1 - 1
2 2 - 2
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8 10
11, 12 10 10 10
13 13 - 13

29

Complexity

 Look at every edge once

 Look at every vertex (except via in-
edge) at most once

 Time = O(n+e)

30

Where to start

 Unlike undirected DFS, start vertex matters

 Add “outer loop”:

mark all vertices unvisited
while there is unvisited vertex v do

scc(v)

 Exercise: redo example starting from another
vertex, e.g. #11 or #13 (which become #1)

6

31

Example

A

FE

CB D

1
2
3
4
5
6

dfs# v root exits low(v)

32

Example
 v Low(v) v Low(v)

