
CSci 421
Introduction to Algorithms
Homework Assignment 7

Due: Tuesday, 17 Aug 2004

Reading: Chapter 11

1. 11.4. Is the original formulaf satisfiable? Is the constructed 3CNF formulaf3 satisfiable? Because one is built
from the other by areduction, the answer to both questions should be the same. Furthermore, because of theway
the reduction works, each assignment satisfyingf (there may be several) corresponds to at least one assignment
satisfyingf3 and vice versa. In particular, the assignment satisfyingf3 should be anextensionof the one forf ,
i.e., they should agree on the values of all the variables they share in common. Give one satisfying assignment
of f and list all extensions satisfyingf3. Take any other assignment satisfyingf3; show that it satisfiesf .

2. 11.5. Is the formula satisfiable? Does the graph contain a 4-clique? Again, satisfying assignments and cliques
should be related. Give one satisfying assignment and list all its corresponding 4-cliques. If possible, find a
4-clique not in that list, and give its corresponding assignment; is it a satisfying assignment?

3. 11.7. Use the definition from page 357. You may assume that Partition is NP-complete.

4. Well folks, here’s the event you’ve all been waiting for: three, count ’em3, proofs that P = NP. Only you can
stop Ruzzo from becoming world-famous. Find and explain the flaw in each of the proofs below.

Let KNAP = {a1#a2# . . .#an#C | ai andC are integers coded in binary, and there is a setI ⊆ {1, . . . , n}
such that

∑
i∈I ai = C}. Let UKNAP be the same, except that the integers are coded in unary, i.e.,a is

represented by1a, the string comprised ofa 1’s. UKNAP is in P (via the dynamic programming algorithm
presented in Section 5.10), butKNAP is NP-complete.

(a) “Proof 1:” For any stringu in {1,#}∗ we can easily produce a stringv in {0, 1,#}∗ such thatu ∈
UKNAP⇔ v ∈ KNAP. (E.g., if u = 11#1#11111 thenv = 10#1#101.) Further, the transformation
can be done in time bounded by a polynomial in the length ofu. Thus, P=NP.

(b) “Proof 2:” For any stringv in {0, 1,#}∗ we can easily produce a stringu in {1,#}∗ such thatv ∈
KNAP⇔ u ∈ UKNAP. Further, the transformation can be done in time bounded by a polynomial in the
length ofu. Thus, P=NP.

(c) “Proof 3:” 1-of-3-SAT is another known NP-complete variant of the satisfiability problem: it is the set of
Boolean formulas in conjunctive normal form with exactly 3 literals per clause such that the formula is
satisfied by a truth assignment making exactly one literal in each clause true. See Problem 11.16.
Let f be a formula in conjunctive normal form with exactly 3 literals per clause (3CNF). Suppose it has
variablesx1, . . . , xm, and clausesc1, . . . , cq. Suppose “xi” occurs in clauses numberedi1, . . . , ij and

“xi” occurs in clauses numberedi′1, . . . , i
′
j′ . Let ai =

∑ j
k=1 ik, andai =

∑ j′

k=1 i′k. Let s =
∑ q

i=1 i.
Generate the string:

u = 1a1#1a1# . . .#1am#1am#1s

Now if f is satisfiable by an assignment that makes exactly one literal per clause true, i.e. iff is in 1-of-3-
SAT, thenu is in UKNAP: Pickai or ai depending on whetherxi is true or false respectively in the 1-of-3
satisfying assignment. Every clause is satisfied by exactly one literal, so the sum of the chosena, a’s is
exactlys. Thusu ∈ UKNAP.
Further the reduction can be done in time polynomial in the length off ; e.g., note that the numbersai, ai,
ands are all of magnitude at mostq2, since each is the sum of at mostq distinct numbers between 1 andq,
so the length ofu is O(q3) = O(|f |3).
Thus P=NP.

5. Optional Extra Credit: 11.24

6. Optional Extra Credit: 11.31

1

