
CSci 421
Introduction to Algorithms

Homework Assignment 3
Due: Tuesday, 13 Jul 2004

Summer 2004 Handout 3

W. L. Ruzzo July 6, 2004

Reading Assignment:
Read Chapter 5, 6.6, 6.8, 6.11.1, 7.1, 7.3.

Homework:

1. Simulate the Maximum Consecutive Subsequence algorithm on the following sequence.

1, 2, -2, 1, 1, 2, -6, 1, 3, 10

Show the values ofSuffix Max andGlobal Max after each iteration through the main
loop, as well as showing the starting and ending indices of the subsequences to which they
implicitly refer.

2. Run the Knapsack algorithm (Fig 5.10, pg 110) on the sequence of weightsk1 = 5, k2 = 2,
k3 = 4, k4 = 3, andk5 = 6, with knapsack capacityK = 16. Show a table like Fig 5.11 to
summarize the computation. (Note: although Fig 5.11 shows only one symbol, some cells
may contain both “I” and “O”; e.g., rowk3 = 5, column 5 in Fig 5.11 could be labeled
“I/O”.)

3. Give an algorithm to solve the following variant of the Knapsack Problem: In addition to
the knapsack capacityK and the weights (also called sizes)ki of the n objects that may
be placed in the knapsack, suppose you are also givenvaluesfor each, i.e.,n positive real
numbersvi, 1 ≤ i ≤ n, and the goal is select a subset of the items so that (1) their total
weight does not exceed the knapsack capacity, and (2) their total value is as large as possible
subject to (1). I.e., find a setI ⊆ {1, 2, . . . , n} such that

∑
i∈I vi is maximized subject to the

constraint that
∑

i∈I ki ≤ K. Briefly explain why your algorithm is correct. In particular,
state carefully the “induction hypothesis” that characterizes it. Analyze its running time.
(Note total weight≤ K rather than= K, and that your output should be an optimal subset,
not just its total weight or value. Also, note that the maximum value is unique, although
there may be many subsets attaining that value; reporting any such subset is sufficient.)

4. Given two sorted lists of numbersx1 < x2 < · · · < xn andy1 < y2 < · · · < ym, and a
numberZ, give an algorithm to find the set

{(i, j) | 1 ≤ i ≤ n; 1 ≤ j ≤ m such thatxi + yj = Z}.

Analyze its running time. TimeO(n + m) is possible.

1



5. 6.64.

6. Run the string alignment algorithm given in lecture (similar to Fig 6.27, pg 158) on strings
S = tcatag andT = tataag. Build the cost matrix and traceback pointers as in the example
given in lecture. Assume that aligning two identical letters gives a score of+2, whereas
aligning a letter with a mismatched letter or a gap (“–”) gives a score of−1.

7. For many applications of the string alignment algorithm, including most biological applica-
tions, it’s not true that “all gaps are created equal.” For example, if a gap in an alignment
reflects a rare evolutionary event where there was an insertion or deletion in one sequence
with respect to the other, then 10 separate gaps of length 1 may be much less likely that one
gap of length 10. E.g. abcdewxyz is more likely to be related to abcde0123456789wxyz
than to 0a1b2c3d4e5w5x7y8z9.

Extend the string alignment algorithm to handle either of the following gap cost models.
(You may choose which of these options you want to do; extra credit for doing both.)

(a) General gaps costs:For general gap costs, part of your input is a table defining a cost
functionC(j), 1 ≤ j ≤ max(m, n) which gives the cost of a gap of lengthj. You may
assumeC(j) < 0 for all j.

(b) “Affine” gap costs: For affine gap costs, you are given two negative constantsCi and
Ce, and a gap of lengthj costsCi + Ce ∗ j. Typically,Ci � Ce < 0, so that it is fairly
expensive to initiate a gap (Ci), and less expensize (per letter) to extend one (Ce).

As usual, give the algorithm, explain why it is correct, and analyze its running time. [The
fastest known algorithm for general gap costs is slower than the basicO(mn) algorithm
presented in lecture, but there is a version handling affine gap costs in that time.]

2


