

Stable Matching, Complexity, and **Representative Problems** 

> Winter 2003 Paul Beame



## Women get the raw deal in the G-S algorithm

- $S^*=\{(m,best(m): m\widehat{I}M\}$
- For each **w**, **worst**(**w**)= lowest rated man among all valid partners of **w**
- Claim: S\*={(worst(w),w): w∈ W}
- - Suppose (m,w)∈ S\*, m¹worst(w)=m'
     Consider stable matching S' s.t. (m',w)∈ S'
  - must exist since m'=worst(w) ■ In S', m is paired with w'¹w=best(m)
  - Therefore (m,w'),(m',w)Î S' but
    - m ><sub>w</sub> m' and w ><sub>m</sub> w' so (m,w) would prefer each other, contradicting stability of S'

#### Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time ≈ # of instructions executed in an ideal assembly language
  - each simple operation (+,\*,-,=,if,call) takes one time step
  - each memory access takes one time step



## **Complexity analysis**

- Problem size N
  - Worst-case complexity: max # steps algorithm takes on any input of size N
  - Best-case complexity: min # steps algorithm takes on any input of size N
  - Average-case complexity: avg # steps algorithm takes on inputs of size N



## **Stable Matching**

- Problem size
  - N=2n² words
  - 2n people each with a preference list of length n
  - 2n²log n bits
    - specifying an ordering for each preference list takes nlog n bits
- Brute force algorithm
  - Try all n! possible matchings
- Gale-Shapley Algorithm
  - n<sup>2</sup> iterations, each costing constant time
    - For each man an array listing the women in preference
    - For each woman an array listing the prefences indexed

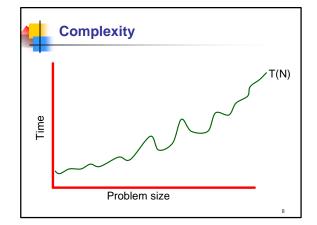
## Complexity

- The complexity of an algorithm associates a number **T(N)**, the best/worst/average-case time the algorithm takes, with each problem size N.
- Mathematically,
  - T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.



## **Efficient = Polynomial Time**

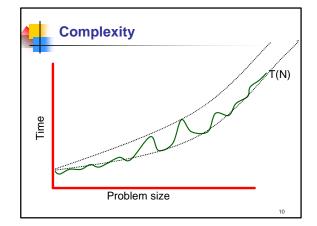
- Polynomial time
  - Running time T(N) £ cNk+d for some c,d,k>0
- Why polynomial time?
  - If problem size grows by at most a constant factor then so does the running time
    - $T(2N) £ c(2N)^k+d £ 2^k(cN^k+d)$
    - Polynomial-time is exactly the set of running times that have this property
  - Typical running times are small degree polynomials, mostly less than N3, at worst N6, not



#### **O-notation etc**

- Given two positive functions f and g
- f(N) is O(g(N)) iff there is a constant c>0 so that f(N) is eventually always £ c g(N)
- f(N) is o(g(N)) iff the ratio f(N)/g(N) goes to 0 as N gets large
- f(N) is W(g(N)) iff there is a constant e>0 so that f(N) is 3 e g(N) for infinitely many values of N
- f(N) is Q(g(N)) iff f(N) is O(g(N)) and f(N) is W(g(N))

Note: The definition of  $\mathbf{W}$  is the same as " $\mathbf{f}(\mathbf{N})$  is **not**  $\mathbf{o}(\mathbf{g}(\mathbf{N}))$ "





## **5 Representative Problems**

- Interval Scheduling
  - Single resource
  - Reservation requests
  - Of form "Can I reserve it from start time s to finish time f?"
  - s < f</p>
  - Find: maximum number of requests that can be scheduled so that no two reservations have the resource at the same time

## Interval scheduling

- Formally
  - Requests 1,2,...,n
  - request i has start time s<sub>i</sub> and finish time f<sub>i</sub> > s<sub>i</sub>
  - Requests i and j are compatible iff either
  - request i is for a time entirely before request j • f, £ s,
    - or, request j is for a time entirely before
    - request i
  - f<sub>j</sub>£s<sub>j</sub>
    Set A of requests is compatible iff every pair of requests i,j∈ A, i¹j is compatible
    Goal: Find maximum size subset A of compatible



## **Interval Scheduling**

- We shall see that an optimal solution can be found using a "greedy algorithm"
  - Myopic kind of algorithm that seems to have no look-ahead
  - These algorithms only work when the problem has a special kind of structure
  - When they do work they are typically very efficient

13



## Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight w;
  - w<sub>i</sub> might be
    - amount of money we get from renting out the resource for that time period
    - amount of time the resource is being used
- Goal: Find compatible subset A of requests with maximum total weight

14



## **Weighted Interval Scheduling**

- Ordinary interval scheduling is a special case of this problem
  - Take all w<sub>i</sub> =1
- Problem is quite different though
  - E.g. one weight might dwarf all others
- "Greedy algorithms" don't work
- Solution: "Dynamic Programming"
  - builds up optimal solutions from smaller problems using a compact table to store them

15



## **Bipartite Matching**

- A graph G=(V,E) is bipartite iff
  - V consists of two disjoint pieces X and Y such that every edge e in E is of the form (x,y) where xî X and yî Y
  - Similar to stable matching situation but in that case all possible edges were present
  - MÍE is a matching in G iff no two edges in M share a vertex
  - Goal: Find a matching M in G of maximum possible size

6



## **Bipartite Matching**

- Models assignment problems
  - X represents jobs, Y represents machines
  - X represents professors, Y represents courses
- If |X|=|Y|=n
  - G has perfect matching iff maximum matching has size n
- Solution: polynomial-time algorithm using "augmentation" technique
  - also used for solving more general class of network flow problems

17



## **Independent Set**

- Given a graph G=(V,E)
  - A set IÍ V is independent iff no two nodes in I are joined by an edge
- Goal: Find an independent subset I in G of maximum possible size
- Models conflicts and mutual exclusion

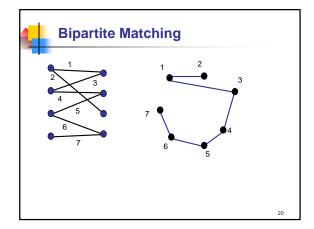
18



## **Independent Set**

- Generalizes
  - Interval Scheduling
    - Vertices in the graph are the requests
    - Vertices are joined by an edge if they are **not** compatible
  - Bipartite Matching
    - Given bipartite graph G=(V,E) create new graph G'=(V',E') where
      - V'=E
      - Two elements of V' (which are edges in G) are joined if they share an endpoint in G

19





## **Independent Set**

- No polynomial-time algorithm is known
  - But to convince someone that there was a large independent set all you'd need to do is show it to them
    - they can easily convince themselves that the set is large enough and independent
  - Convincing someone that there isn't one seems much harder
- We will show that Independent Set is NP-complete
  - Class of all the hardest problems that have the property above

21



## **Competitive Facility Location**

- Two players competing for market share in a geographic area
- e.g. McDonald's, Burger King
- Rules:
  - Region is divided into n zones, 1,...,n
  - Each zone i has a value b<sub>i</sub>
    - Revenue derived from opening franchise in that zone
  - No adjacent zones may contain a franchise
    - i.e., zoning regulations limit density
- Players alternate opening franchises
- Find: Given a target total value B is there a strategy for the second player that always achieves ≥ B?

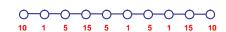
22



## **Competitive Facility Location**

- Model geography by
  - A graph G=(V,E) where
    - V is the set {1,...,n} of zones
    - E is the set of pairs (i,j) such that i and j are adjacent zones
- Observe:
  - The set of zones with franchises will form an independent set in G

## **Competitive Facility Location**



Target B = 20 achievable ?

What about B = 25?

24



# **Competitive Facility Location**

- Checking that a strategy is good seems hard
   You'd have to worry about all possible responses at each round!
  - a giant search tree of possibilities
- Problem is PSPACE-complete
  - Likely strictly harder than NP-complete problems
  - PSPACE-complete problems include
    - Game-playing problems such as n×n chess and checkers
    - Logic problems such as whether quantified boolean expressions are always true
    - Verification problems for finite automata