
1

1

CSE 421: Introduction to
Algorithms

NP-completeness

Winter 2003
Paul Beame

2

Computational Complexity

n Classify problems according to the amount of
computational resources used by the best
algorithms that solve them

n Recall:
n worst-case running time of an algorithm

n max # steps algorithm takes on any input of
size n

n Define:
n TIME(f(n)) to be the set of all decision problems

solved by algorithms having worst-case running
time O(f(n))

3

Decision problems

n Computational complexity usually analyzed
using decision problems
n answer is just 1 or 0 (yes or no).

n Why?
n much simpler to deal with
n deciding whether G has a path from s to t, is

certainly no harder than finding a path from s to t
in G, so a lower bound on deciding is also a lower
bound on finding

n Less important, but if you have a good decider,
you can often use it to get a good finder.

4

Polynomial time

n Define P (polynomial-time) to be
n the set of all decision problems solvable by

algorithms whose worst-case running time
is bounded by some polynomial in the input
size.

n P = Uk≥0TIME(nk)

5

Beyond P?

n There are many natural, practical
problems for which we don’t know any
polynomial-time algorithms

n e.g. decisionTSP:
n Given a weighted graph G and an integer

k, does there exist a tour that visits all
vertices in G having total weight at most k?

6

Relative Complexity of Problems

n Want a notion that allows us to compare
the complexity of problems
n Want to be able to make statements of the

form
“If we could solve problem R in
polynomial time then we can solve
problem L in polynomial time”

“Problem R is at least as hard as problem
L”

2

7

Polynomial Time Reduction

n L ≤P R if there is an algorithm for L using a ‘black box’
(subroutine) that solves R that
n Uses only a polynomial number of steps
n Makes only a polynomial number of calls to a subroutine for

R

n Thus, poly time algorithm for R implies poly time
algorithm for L
n Not only is the number of calls polynomial but the size of the

inputs on which the calls are made is polynomial!

n If you can prove there is no fast algorithm for L, then
that proves there is no fast algorithm for R

8

A Special kind of Polynomial-Time
Reduction

n We will always use a restricted form of
polynomial-time reduction often called Karp
or many-one reduction

n L R if and only if there is an algorithm for L
given a black box solving R that on input x
n Runs for polynomial time computing an input T(x)
n Makes one call to the black box for R
n Returns the answer that the black box gave
We say that the function T is the reduction

1
P≤

9

Why the name reduction?

n Weird: it maps an easier problem into a
harder one

n Same sense as saying Maxwell reduced
the problem of analyzing electricity &
magnetism to solving partial differential
equations
n solving partial differential equations in

general is a much harder problem than
solving E&M problems

10

A geek joke

n An engineer
n is placed in a kitchen with an empty kettle on the table and told

to boil water; she fills the kettle with water, puts it on the stove,
turns on the gas and boils water.

n she is next confronted with a kettle full of water sitting on the
counter and told to boil water; she puts it on the stove, turns on
the gas and boils water.

n A mathematician
n is placed in a kitchen with an empty kettle on the table and told

to boil water; he fills the kettle with water, puts it on the stove,
turns on the gas and boils water.

n he is next confronted with a kettle full of water sitting on the
counter and told to boil water: he empties the kettle in the sink,
places the empty kettle on the table and says, “I’ve reduced this
to an already solved problem”.

11

Reductions from a Special Case to a
General Case

n Show: Vertex-Cover ≤P Set-Cover
n Vertex-Cover:

n Given an undirected graph G=(V,E) and an integer
k is there a subset W of V of size at most k such
that every edge of G has at least one endpoint in
W? (i.e. W covers all edges of G).

n Set-Cover:
n Given a set U of n elements, a collection S1,…,Sm

of subsets of U, and an integer k, does there exist
a collection of at most k sets whose union is equal
to U?

12

The Simple Reduction

n Transformation T maps
(G=(V,E),k) to (U,S1,…,Sm,k’)
n U←E
n For each vertex v∈V create a set Sv

containing all edges that touch v
n k’←k

n Reduction T is clearly polynomial-time
to compute

n We need to prove that the resulting
algorithm gives the right answer!

3

13

Proof of Correctness

n Two directions:
n If the answer to Vertex-Cover on (G,k) is YES then

the answer for Set-Cover on T(G,k) is YES
n If a set W of k vertices covers all edges then

the collection {Sv | v∈ W} of k sets covers all of
U

n If the answer to Set-Cover on T(G,k) is YES then
the answer for Vertex-Cover on (G,k) is YES

n If a subcollection Sv1
,…,Svk

covers all of U then

the set {v1,…,vk} is a vertex cover in G.

14

Reductions by Simple Equivalence

n Show: Independent-Set ≤P Clique
n Independent-Set:

n Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that
no two vertices in U are joined by an edge.

n Clique:
n Given a graph G=(V,E) and an integer k, is

there a subset U of V with |U| ≥ k such that
every pair of vertices in U is joined by an
edge.

15

Independent-Set ≤P Clique

n Given (G,k) as input to Independent-Set
where G=(V,E)

n Transform to (G’,k) where G’=(V,E’)
has the same vertices as G but E’
consists of precisely those edges that
are not edges of G

n U is an independent set in G
⇔ U is a clique in G’

16

More Reductions

n Show: Independent Set ≤P Vertex-Cover
n Vertex-Cover:

n Given an undirected graph G=(V,E) and an integer
k is there a subset W of V of size at most k such
that every edge of G has at least one endpoint in
W? (i.e. W covers all edges of G).

n Independent-Set:
n Given a graph G=(V,E) and an integer k, is there a

subset U of V with |U| ≥ k such that no two
vertices in U are joined by an edge.

17

Reduction Idea

n Claim: In a graph G=(V,E), S is an
independent set iff V-S is a vertex cover

n Proof:
n ⇒ Let S be an independent set in G

n Then S contains at most one endpoint of each
edge of G

n At least one endpoint must be in V-S
n V-S is a vertex cover

n ⇐Let W=V-S be a vertex cover of G
n Then S does not contain both endpoints of any

edge (else W would miss that edge)
n S is an independent set

18

Reduction

n Map (G,k) to (G,n-k)
n Previous lemma proves correctness

n Clearly polynomial time

n We also get that
n Vertex-Cover ≤P Independent Set

4

19

Satisfiability

n Boolean variables x1,...,xn
n taking values in {0,1}. 0=false, 1=true

n Literals
n xi or ¬xi for i=1,...,n

n Clause
n a logical OR of one or more literals
n e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

n CNF formula
n a logical AND of a bunch of clauses

20

Satisfiability

n CNF formula example
n (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ (x2 ∨ ¬x4 ∨ x7 ∨ x5)

n If there is some assignment of 0’s and
1’s to the variables that makes it true
then we say the formula is satisfiable
n the one above is, the following isn’t
n x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

n Satisfiability: Given a CNF formula F, is
it satisfiable?

21

Common property of these problems

n There is a special piece of information, a
short certificate or proof, that allows you to
efficiently verify (in polynomial-time) that the
YES answer is correct. This certificate might
be very hard to find

n e.g.
n DecisionTSP: the tour itself,
n Independent-Set, Clique: the set U
n Satisfiability: an assignment that makes F

true.
22

The complexity class NP

NP consists of all decision problems where

n You can verify the YES answers efficiently
(in polynomial time) given a short
(polynomial-size) certificate

And

n No certificate can fool your polynomial time
verifier into saying YES for a NO instance

23

More Precise Definition of NP

n A decision problem is in NP iff there is a
polynomial time procedure verify(.,.),
and an integer k such that
n for every input x to the problem that is a

YES instance there is a certificate t with
|t| ≤ |x|k such that verify(x,t) = YES

and
n for every input x to the problem that is a

NO instance there does not exist a
certificate t with |t| ≤ |x|k such that
verify(x,t) = YES

24

Example: CLIQUE is in NP

procedure verify(x,t)
if

x is a well-formed representation of a
graph G = (V, E) and an integer k,

and
t is a well-formed representation of a
vertex subset U of V of size k,

and
U is a clique in G,

then output "YES"
else output "I'm unconvinced"

5

25

Is it correct?

For every x = (G,k) such that G contains a
k-clique, there is a certificate t that will
cause verify(x,t) to say YES,
n t = a list of the vertices in such a k-clique

And no certificate can fool verify(x,⋅) into
saying YES if either
n x isn't well-formed (the uninteresting case)
n x = (G,k) but G does not have any cliques

of size k (the interesting case)

26

Keys to showing that
a problem is in NP

n What's the output? (must be YES/NO)
n What must the input look like?
n Which inputs need a YES answer?

n Call such inputs YES inputs/YES instances
n For every given YES input, is there a

certificate that would help?
n OK if some inputs need no certificate

n For any given NO input, is there a fake
certificate that would trick you?

27

Solving NP problems
without hints

n The only obvious algorithm for most of
these problems is brute force:
n try all possible certificates and check each one to

see if it works.
n Exponential time:

n 2n truth assignments for n variables
n n! possible TSP tours of n vertices

n possible k element subsets of n vertices

n etc.

n
k

 
 
 

28

What We Know

n Nobody knows if all problems in NP can be
done in polynomial time, i.e. does P=NP?
n one of the most important open questions in all of

science.
n huge practical implications

n Every problem in P is in NP
n one doesn’t even need a certificate for problems in

P so just ignore any hint you are given

n Every problem in NP is in exponential time

29

P and NP

NP

P

EXP

EXP = Uk≥0TIME(2nk)

30

NP-hardness &
NP-completeness

n Some problems in NP seem hard
n people have looked for efficient algorithms

for them for hundreds of years without
success

n However
n nobody knows how to prove that they are

really hard to solve, i.e. P≠ NP

6

31

Problems in NP that seem hard

n Some Examples in NP
n Satisfiability
n Independent-Set
n Clique
n Vertex Cover

n All hard to solve; certificates seem to
help on all

n Fast solution to any gives fast solution
to all!

32

NP-hardness &
NP-completeness

n Alternative approach to proving problems not
in P
n show that they are at least as hard as any problem

in NP

n Rough definition:
n A problem is NP-hard iff it is at least as hard as

any problem in NP
n A problem is NP-complete iff it is both

n NP-hard
n in NP

33

P and NP

NP

P

NP-complete

NP-hard

34

NP-hardness &
NP-completeness

n Definition: A problem R is NP-hard iff
every problem L∈NP satisfies L ≤PR

n Definition: A problem R is NP-complete
iff R is NP-hard and R ∈NP

n Even though we seem to have lots of hard
problems in NP it is not obvious that such
super-hard problems even exist!

35

Cook’s Theorem

n Theorem (Cook 1971): Satisfiability is
NP-complete

n Recall
n CNF formula

n e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ (x2 ∨ ¬x4 ∨ x7 ∨ x5)
n If there is some assignment of 0’s and 1’s to the

variables that makes it true then we say the
formula is satisfiable

n Satisfiability: Given a CNF formula F, is it
satisfiable?

36

Implications of Cook’s Theorem?

n There is at least one interesting super-
hard problem in NP

n Is that such a big deal?

n YES!
n There are lots of other problems that can

be solved if we had a polynomial-time
algorithm for Satisfiability

n Many of these problems are exactly as
hard as Satisfiability

7

37

A useful property of polynomial-time
reductions

n Theorem: If L ≤PR and R ≤PS then
L ≤PS

n Proof idea: (Using)
n Compose the reduction T from L to R with the

reduction T’ from R to S to get a new reduction
T’’(x)=T’(T(x)) from L to S.

n The general case is similar and uses the fact that
the composition of two polynomials is also a
polynomial

1
P≤

38

Cook’s Theorem & Implications

n Theorem (Cook 1971): Satisfiability is
NP-complete

For proof see CSE 431

n Corollary: R is NP-hard ⇔ Satisfiability ≤PR
n (or Q ≤PR for any NP-complete problem Q)

n Proof:
n If R is NP-hard then every problem in NP

polynomial-time reduces to R, in particular
Satisfiability does since it is in NP

n For any problem L in NP, L ≤PSatisfiability and
so if Satisfiability ≤PR we have L ≤P R.
n therefore R is NP-hard if Satisfiability ≤PR

39

Another NP-complete problem:
Satisfiability ≤PIndependent-Set

n A Tricky Reduction:
n mapping CNF formula F to a pair <G,k>
n Let m be the number of clauses of F
n Create a vertex in G for each literal in F
n Join two vertices u, v in G by an edge iff

n u and v correspond to literals in the same
clause of F, (green edges) or

n u and v correspond to literals x and ¬x (or vice
versa) for some variable x. (red edges).

n Set k=m
n Clearly polynomial-time

40

Satisfiability ≤pIndependent-Set

F: (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x4 ∨ x3) ∧ (x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

41

Satisfiability ≤pIndependent-Set

n Correctness:
n If F is satisfiable then there is some assignment that

satisfies at least one literal in each clause.
n Consider the set U in G corresponding to the first satisfied

literal in each clause.
n |U|=m
n Since U has only one vertex per clause, no two vertices

in U are joined by green edges
n Since a truth assignment never satisfies both x and ¬x,

U doesn’t contain vertices labeled both x and ¬x and so
no vertices in U are joined by red edges

n Therefore G has an independent set, U, of size at least
m

n Therefore (G,m) is a YES for independent set.

42

Satisfiability ≤pIndependent-Set

F: (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x4 ∨ x3) ∧ (x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

1 0 1 1 0 1 1 0 1

Given assignment x1=x2=x3=x4=1,
U is as circled

U

8

43

Satisfiability ≤pIndependent-Set

n Correctness continued:
n If (G,m) is a YES for Independent-Set then there is

a set U of m vertices in G containing no edge.
n Therefore U has precisely one vertex per

clause because of the green edges in G.
n Because of the red edges in G, U does not

contain vertices labeled both x and ¬x
n Build a truth assignment A that makes all

literals labeling vertices in U true and for any
variable not labeling a vertex in U, assigns its
truth value arbitrarily.

n By construction, A satisfies F
n Therefore F is a YES for Satisfiability.

44

Satisfiability ≤pIndependent-Set

F: (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x4 ∨ x3) ∧ (x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

Given U, satisfying assignment
is x1=x3=x4=0, x2=0 or 1

0 1 0 ? 1 0 ? 1 0

45

Independent-Set is NP-complete

n We just showed that Independent-Set is NP-
hard and we already knew Independent-Set
is in NP.

n Corollary: Clique is NP-complete
n We showed already that

Independent-Set ≤P Clique and Clique is
in NP.

46

Problems we already know are NP-
complete

n Satisfiability
n Independent-Set
n Clique
n Vertex-Cover

n There are 1000’s of practical problems
that are NP-complete, e.g. scheduling,
optimal VLSI layout etc.

47

Is NP as bad as it gets?

n NO! NP-complete problems are
frequently encountered, but there's
worse:
n Some problems provably require

exponential time.
n Ex: Does P halt on x in 2|x| steps?

n Some require steps

n And of course, some are just plain
uncomputable

nn 2n 2 22 , 2 , 2 , ...

48

Steps to Proving Problem R is
NP-complete

n Show R is NP-hard:
n State:`Reduction is from NP-hard Problem

L’
n Show what the map T is
n Argue that T is polynomial time
n Argue correctness: two directions Yes for

L implies Yes for R and vice versa.
n Show R is in NP

n State what hint is and why it works
n Argue that it is polynomial-time to check.

9

49

A particularly useful problem for
proving NP-completeness

n 3-SAT: Given a CNF formula F having
precisely 3 variables per clause
(i.e., in 3-CNF), is F satisfiable?

n Claim: 3-SAT is NP-complete
n Proof:

n 3-SAT∈NP
n Certificate is a satisfying assignment
n Just like Satisfiability it is polynomial-time to

check the certificate

50

Satisfiability ≤P3-SAT

n Reduction:
n map CNF formula F to another CNF

formula G that has precisely 3 variables
per clause.
n G has one or more clauses for each

clause of F
n G will have extra variables that don’t

appear in F
n for each clause C of F there will be a

different set of variables that are used only
in the clauses of G that correspond to C

51

Satisfiability ≤P3-SAT

n Goal:
n An assignment a to the original variables makes

clause C true in F iff
n there is an assignment to the extra variables that

together with the assignment a will make all new
clauses corresponding to C true.

n Define the reduction clause-by-clause
n We’ll use variable names zj to denote the extra

variables related to a single clause C to simplify
notation
n in reality, two different original clauses will not

share zj

52

Satisfiability ≤P3-SAT

n For each clause C in F:
n If C has 3 variables:

n Put C in G as is
n If C has 2 variables, e.g. C=(x1 ∨ ¬x3)

n Use a new variable z and put two clauses in G
(x1 ∨ ¬x3 ∨ z) ∧ (x1 ∨ ¬x3 ∨ ¬z)

n If original C is true under assignment a then
both new clauses will be true under a

n If new clauses are both true under some
assignment b then the value of z doesn’t help
in one of the two clauses so C must be true
under b

53

Satisfiability ≤P3-SAT

n If C has 1 variable: e.g. C=x1

n Use two new variables z1, z2 and put 4
new clauses in G
(x1 ∨ ¬z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧
(x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ z1 ∨ z2)

n If original C is true under assignment a
then all new clauses will be true under a

n If new clauses are all true under some
assignment b then the values of z1 and
z2 don’t help in one of the 4 clauses so
C must be true under b

54

Satisfiability ≤P3-SAT

n If C has k ≥ 4 variables: e.g. C=(x1 ∨ ... ∨ xk)
n Use k-3 new variables z2,...,zk-2 and put k-2 new

clauses in G
(x1 ∨ x2 ∨ z2) ∧ (¬z2 ∨ x3 ∨ z3) ∧ (¬z3 ∨ x4 ∨ z4) ∧ ...
∧ (¬zk-3 ∨ xk-2 ∨ zk-2) ∧ (¬zk-2 ∨ xk-1 ∨ xk)

n If original C is true under assignment a then some
xi is true for i ≤ k. By setting zj true for all j<i and
false for all j ≥ i, we can extend a to make all new
clauses true.

n If new clauses are all true under some assignment
b then some xi must be true for i ≤ k because
z2 ∧ (¬z2 ∨ z3) ∧ ... ∧ (¬zk-3 ∨ zk-2) ∧ ¬zk-2 is not
satisfiable

10

55

Graph Colorability

n Defn: Given a graph G=(V,E), and an integer k,
a k-coloring of G is
n an assignment of up to k different colors to the

vertices of G so that the endpoints of each edge have
different colors.

n 3-Color: Given a graph G=(V,E), does G have a
3-coloring?

n Claim: 3-Color is NP-complete
n Proof: 3-Color is in NP:

n Hint is an assignment of red,green,blue to the
vertices of G

n Easy to check that each edge is colored correctly

56

3-SAT ≤P3-Color

n Reduction:
n We want to map a 3-CNF formula F to a

graph G so that
n G is 3-colorable iff F is satisfiable

57

3-SAT ≤P3-Color

O

TF

Base Triangle
58

3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn
Variable Part:

in 3-coloring, variable
colors correspond to
some truth assignment
(same color as T or F)

59

3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

Clause Part:
Add one 6 vertex gadget per clause connecting
its ‘outer vertices’ to the literals in the clause

(¬x
1 ∨ x

2 ∨ x
n)

(x
1 ∨ x

3 ∨ x
6)

60

3-SAT ≤P3-Color

Any truth assignment satisfying the formula
can be extended to a 3-coloring of the graph

F
O

O

T
F

O

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n)

(x
1 ∨ x

3 ∨ x
6)

11

61

3-SAT ≤P3-Color

Any 3-coloring of the graph colors
each gadget triangle using each color

O

F

T

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n)

(x
1 ∨

x
3 ∨

x
6)

62

3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n)

(x
1 ∨ x

3 ∨ x
6)

Any 3-coloring of the graph has an F opposite
the O color in the triangle of each gadget

O

F

T

F

63

3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n)

(x
1 ∨ x

3 ∨ x
6)

Any 3-coloring of the graph has T at the
other end of the blue edge connected to the F

O

F

T

F

T

64

3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n)

(x
1 ∨ x

3 ∨ x
6)

Any 3-coloring of the graph yields a
satisfying assignment to the formula

O

F

T

F

T

65

More NP-completeness

n Subset-Sum problem
n Given n integers w1,…,wn and integer W
n Is there a subset of the n input integers

that adds up to exactly W?

n O(nW) solution from dynamic programming
but if W and each wi can be n bits long then
this is exponential time

66

3-SAT ≤PSubset-Sum

n Given a 3-CNF formula with m clauses
and n variables

n Will create 2m+2n numbers that are
m+n digits long
n Two numbers for each variable xi

n ti and fi (corresponding to xi being true
or xi being false)

n Two extra numbers for each clause
n uj and vj (filler variables to handle

number of false literals in clause Cj)

12

67

3-SAT ≤PSubset-Sum

1 2 3 4 … n 1 2 3 4 … m

i j

1 0 0 0 … 0 0 0 1 0 … 1

1 0 0 0 … 0 1 0 0 1 … 0

0 1 0 0 … 0 0 1 0 0 … 1

0 0 0 0 … 0 1 0 0 0 … 0

0 1 0 0 … 0 0 0 1 1 … 0

t1

f2

t2

f1

C4=(x1∨¬ x2∨ x5)

… ….
u1=v1

0 0 0 0 … 0 0 1 0 0 … 0u2=v2

… ….

1 1 1 1 … 1 3 3 3 3 … 3W

68

P vs NP

n Theory
n P = NP?
n Open Problem!
n Bet against it

n Practice
n Many interesting, useful,

natural, well-studied
problems known to be NP-
complete

n With rare exceptions, no
one routinely succeeds in
finding exact solutions to
large, arbitrary instances

