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Computational Complexity

n Classify problems according to the amount of 
computational resources used by the best 
algorithms that solve them

n Recall:  
n worst-case running time of an algorithm 

n max # steps algorithm takes on any input of 
size n

n Define:
n TIME(f(n)) to be the set of all decision problems

solved by algorithms having worst-case running 
time O(f(n))

3

Decision problems

n Computational complexity usually analyzed 
using decision problems
n answer is just 1 or 0 (yes or no).

n Why?
n much simpler to deal with
n deciding whether G has a path from s to t, is 

certainly no harder than finding a path from s to t
in G, so a lower bound on deciding is also a lower 
bound on finding

n Less important, but if you have a good decider, 
you can often use it to get a good finder.  
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Polynomial time

n Define P (polynomial-time) to be 
n the set of all decision problems solvable by 

algorithms whose worst-case running time 
is bounded by some polynomial in the input 
size. 

n P = Uk≥0TIME(nk)
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Beyond P?

n There are many natural, practical 
problems for which we don’t know any 
polynomial-time algorithms

n e.g. decisionTSP:
n Given a weighted graph G and an integer 

k, does there exist a tour that visits all 
vertices in G having total weight at most k?
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Relative Complexity of Problems

n Want a notion that allows us to compare 
the complexity of problems
n Want to be able to make statements of the 

form
“If we could solve problem R in 
polynomial time then we can solve 
problem L in polynomial time”

“Problem R is at least as hard as problem 
L”
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Polynomial Time Reduction 

n L ≤P R if there is an algorithm for L using a ‘black box’ 
(subroutine) that solves R that
n Uses only a polynomial number of steps 
n Makes only a polynomial number of calls to a subroutine for

R

n Thus, poly time algorithm for R implies poly time
algorithm for L
n Not only is the number of calls polynomial but the size of the 

inputs on which the calls are made is polynomial!

n If you can prove there is no fast algorithm for L, then 
that proves there is no fast algorithm for R
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A Special kind of Polynomial-Time 
Reduction

n We will always use a restricted form of 
polynomial-time reduction often called Karp 
or many-one reduction

n L R if and only if there is an algorithm for L 
given a black box solving R that on input x
n Runs for polynomial time computing an input T(x)
n Makes one call to the black box for R
n Returns the answer that the black box gave
We say that  the function T is the reduction

1
P≤
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Why the name reduction?

n Weird: it maps an easier problem into a 
harder one

n Same sense as saying Maxwell reduced
the problem of analyzing electricity & 
magnetism to solving partial differential 
equations
n solving partial differential equations in 

general is a much harder problem than 
solving E&M problems
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A geek joke

n An engineer
n is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

n she is next confronted with a kettle full of water sitting on the 
counter and told to boil water; she puts it on the stove, turns on 
the gas and boils water.

n A mathematician
n is placed in a kitchen with an empty kettle on the table and told 

to boil water; he fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

n he is next confronted with a kettle full of water sitting on the
counter and told to boil water: he empties the kettle in the sink, 
places the empty kettle on the table and says, “I’ve reduced this 
to an already solved problem”.
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Reductions from a Special Case to a 
General Case

n Show: Vertex-Cover ≤P Set-Cover
n Vertex-Cover:

n Given an undirected graph G=(V,E) and an integer 
k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G).

n Set-Cover:
n Given a set U of n elements, a collection S1,…,Sm

of subsets of U, and an integer k, does there exist 
a collection of at most k sets whose union is equal 
to U?
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The Simple Reduction

n Transformation T maps             
(G=(V,E),k) to (U,S1,…,Sm,k’)
n U←E
n For each vertex v∈V create a set Sv

containing all edges that touch v
n k’←k

n Reduction T is clearly polynomial-time 
to compute

n We need to prove that the resulting 
algorithm gives the right answer!
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Proof of Correctness

n Two directions:  
n If the answer to Vertex-Cover on (G,k) is YES then 

the answer for Set-Cover on T(G,k) is YES
n If a set W of k vertices covers all edges then 

the collection {Sv | v∈ W} of k sets covers all of 
U

n If the answer to Set-Cover on T(G,k) is YES then 
the answer for Vertex-Cover on (G,k) is YES

n If a subcollection Sv1
,…,Svk

covers all of U then 

the set {v1,…,vk} is a vertex cover in G.
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Reductions by Simple Equivalence

n Show: Independent-Set ≤P Clique
n Independent-Set:

n Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| ≥ k such that 
no two vertices in U are joined by an edge.

n Clique:
n Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an 
edge.
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Independent-Set ≤P Clique

n Given (G,k) as input to Independent-Set
where G=(V,E)

n Transform to (G’,k) where G’=(V,E’)
has the same vertices as G but E’
consists of precisely those edges that 
are not edges of G

n U is an independent set in G
⇔ U is a clique in G’
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More Reductions

n Show: Independent Set ≤P Vertex-Cover
n Vertex-Cover:

n Given an undirected graph G=(V,E) and an integer 
k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G).

n Independent-Set:
n Given a graph G=(V,E) and an integer k, is there a 

subset U of V with |U| ≥ k such that no two
vertices in U are joined by an edge.

17

Reduction Idea

n Claim: In a graph G=(V,E), S is an 
independent set iff V-S is a vertex cover

n Proof:
n ⇒ Let S be an independent set in G

n Then S contains at most one endpoint of each 
edge of G

n At least one endpoint must be in V-S
n V-S is a vertex cover

n ⇐Let W=V-S be a vertex cover of G
n Then S does not contain both endpoints of any 

edge (else W would miss that edge)
n S is an independent set
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Reduction

n Map  (G,k) to (G,n-k)
n Previous lemma proves correctness

n Clearly polynomial time

n We also get that
n Vertex-Cover ≤P Independent Set
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Satisfiability

n Boolean variables x1,...,xn
n taking values in {0,1}.  0=false, 1=true

n Literals
n xi or ¬xi for i=1,...,n

n Clause
n a logical OR of one or more literals
n e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

n CNF formula
n a logical AND of a bunch of clauses

20

Satisfiability

n CNF formula example
n (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ ( x2 ∨ ¬x4 ∨ x7 ∨ x5)

n If there is some assignment of 0’s and 
1’s to the variables that makes it true 
then we say the formula is satisfiable
n the one above is, the following isn’t
n x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

n Satisfiability: Given a CNF formula F, is 
it satisfiable?
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Common property of these problems

n There is a special piece of information, a 
short certificate or proof, that allows you to 
efficiently verify (in polynomial-time) that the 
YES answer is correct.  This certificate might 
be very hard to find

n e.g.  
n DecisionTSP: the tour itself, 
n Independent-Set, Clique: the set U
n Satisfiability: an assignment that makes F

true.
22

The complexity class NP

NP consists of all decision problems where 

n You can verify the YES answers efficiently 
(in polynomial time) given a short 
(polynomial-size) certificate

And

n No certificate can fool your polynomial time 
verifier into saying YES for a NO instance
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More Precise Definition of NP

n A decision problem is in NP iff there is a 
polynomial time procedure verify(.,.),
and an integer k such that 
n for every input x to the problem that is a 

YES instance there is a certificate t with 
|t| ≤ |x|k such that verify(x,t) = YES

and
n for every input x to the problem that is a 

NO instance there does not exist a
certificate t with |t| ≤ |x|k such that 
verify(x,t) = YES

24

Example: CLIQUE is in NP

procedure verify(x,t)
if 

x is a well-formed representation of  a 
graph G = (V, E) and an integer k, 

and 
t is a well-formed representation of a
vertex subset U of V of size k,

and 
U is a clique in G, 

then output "YES"
else output "I'm unconvinced" 
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Is it correct?

For every x = (G,k) such that G contains a 
k-clique, there is a certificate t that will 
cause verify(x,t) to say YES,
n t = a list of the vertices in such a k-clique

And no certificate can fool verify(x,⋅) into 
saying YES if either 
n x isn't well-formed (the uninteresting case)
n x = (G,k) but G does not have any cliques 

of size k (the interesting case)
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Keys to showing  that 
a problem is in NP

n What's the output?  (must be YES/NO)
n What must the input look like?
n Which inputs need a YES answer?

n Call such inputs YES inputs/YES instances
n For every given YES input, is there a 

certificate that would help?
n OK if some inputs need no certificate

n For any given NO input, is there a fake 
certificate that would trick you?
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Solving NP problems 
without hints

n The only obvious algorithm for most of 
these problems is brute force:
n try all possible certificates and check each one to 

see if it works.
n Exponential time:

n 2n truth assignments for n variables
n n! possible TSP tours of n vertices

n possible k element subsets of n vertices

n etc.

n
k

 
 
 
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What We Know

n Nobody knows if all problems in NP can be 
done in polynomial time, i.e. does P=NP?
n one of the most important open questions in all of 

science.
n huge practical implications

n Every problem in P is in NP
n one doesn’t even need a certificate for problems in 

P so just ignore any hint you are given

n Every problem in NP is in exponential time

29

P and NP

NP

P

EXP

EXP = Uk≥0TIME(2nk)
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NP-hardness & 
NP-completeness

n Some problems in NP seem hard
n people have looked for efficient algorithms 

for them for hundreds of years without 
success

n However
n nobody knows how to prove that they are 

really hard to solve, i.e. P≠ NP
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Problems in NP that seem hard

n Some Examples in NP
n Satisfiability
n Independent-Set
n Clique
n Vertex Cover

n All hard to solve; certificates seem to 
help on all

n Fast solution to any gives fast solution 
to all!

32

NP-hardness & 
NP-completeness

n Alternative approach to proving problems not 
in P
n show that they are at least as hard as any problem 

in NP

n Rough definition:
n A problem is NP-hard iff it is at least as hard as 

any problem in NP
n A problem is NP-complete iff it is both

n NP-hard
n in NP

33

P and NP

NP

P

NP-complete

NP-hard
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NP-hardness & 
NP-completeness

n Definition: A problem R is NP-hard iff 
every problem L∈NP satisfies L ≤PR

n Definition: A problem R is NP-complete
iff R is NP-hard and R ∈NP

n Even though we seem to have lots of hard 
problems in NP it is not obvious that such 
super-hard problems even exist!
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Cook’s Theorem

n Theorem (Cook 1971): Satisfiability is           
NP-complete

n Recall
n CNF formula

n e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ ( x2 ∨ ¬x4 ∨ x7 ∨ x5)
n If there is some assignment of 0’s and 1’s to the 

variables that makes it true then we say the 
formula is satisfiable

n Satisfiability: Given a CNF formula F, is it 
satisfiable?

36

Implications of Cook’s Theorem?

n There is at least one interesting super-
hard problem in NP

n Is that such a big deal?

n YES!
n There are lots of other problems that can 

be solved if we had a polynomial-time 
algorithm for Satisfiability

n Many of these problems are exactly as 
hard as Satisfiability
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A useful property of polynomial-time 
reductions

n Theorem: If  L ≤PR and R ≤PS then 
L ≤PS  

n Proof idea: (Using )
n Compose the reduction T from L to R with the 

reduction T’ from R to S to get a new reduction  
T’’(x)=T’(T(x)) from L to S.

n The general case is similar and uses the fact that 
the composition of two polynomials is also a 
polynomial

1
P≤
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Cook’s Theorem & Implications

n Theorem (Cook 1971): Satisfiability is           
NP-complete

For proof see CSE 431

n Corollary: R is NP-hard ⇔ Satisfiability ≤PR
n (or Q ≤PR for any NP-complete problem Q)

n Proof:
n If R is NP-hard then every problem in NP

polynomial-time reduces to R, in particular 
Satisfiability does since it is in NP

n For any problem L in NP, L ≤PSatisfiability and 
so if Satisfiability ≤PR we have L ≤P R.
n therefore R is NP-hard if Satisfiability ≤PR
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Another NP-complete problem:
Satisfiability ≤PIndependent-Set

n A Tricky Reduction:
n mapping CNF formula F to a pair <G,k>
n Let m be the number of clauses of F
n Create a vertex in G for each literal in F
n Join two vertices u, v in G by an edge iff

n u and v correspond to literals in the same 
clause of F, (green edges) or

n u and v correspond to literals x and ¬x (or vice 
versa) for some variable x.  (red edges).

n Set k=m
n Clearly polynomial-time

40

Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

41

Satisfiability ≤pIndependent-Set

n Correctness:
n If F is satisfiable then there is some assignment that 

satisfies at least one literal in each clause.  
n Consider the set U in G corresponding to the first satisfied 

literal in each clause.  
n |U|=m
n Since U has only one vertex per clause, no two vertices 

in U are joined by green edges
n Since a truth assignment never satisfies both x and ¬x,

U doesn’t contain vertices labeled both x and ¬x and so 
no vertices in U are joined by red edges

n Therefore G has an independent set, U, of size at least
m

n Therefore (G,m) is a YES for independent set.

42

Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

1       0      1         1      0      1         1       0      1

Given assignment x1=x2=x3=x4=1,
U is as circled

U
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Satisfiability ≤pIndependent-Set

n Correctness continued:
n If (G,m) is a YES for Independent-Set then there is 

a set U of m vertices in G containing no edge.
n Therefore U has precisely one vertex per 

clause because of the green edges in G.
n Because of the red edges in G, U does not 

contain vertices labeled both x and ¬x
n Build a truth assignment A that makes all 

literals labeling vertices in U true and for any 
variable not labeling a vertex in U, assigns its 
truth value arbitrarily.

n By construction, A satisfies F
n Therefore F is a YES for Satisfiability.

44

Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

Given U, satisfying assignment
is x1=x3=x4=0, x2=0 or 1

0       1     0         ?       1      0         ?       1      0

45

Independent-Set is NP-complete

n We just showed that Independent-Set is NP-
hard and we already knew Independent-Set
is in NP.

n Corollary: Clique is NP-complete
n We showed already that                          

Independent-Set ≤P Clique and Clique is 
in NP.

46

Problems we already know are NP-
complete

n Satisfiability
n Independent-Set
n Clique
n Vertex-Cover

n There are 1000’s of practical problems 
that are NP-complete, e.g. scheduling, 
optimal VLSI layout etc. 

47

Is NP as bad as it gets?

n NO!  NP-complete problems are 
frequently encountered, but there's 
worse:
n Some problems provably require 

exponential time.
n Ex: Does P halt on x in 2|x| steps?

n Some require steps

n And of course, some are just plain 
uncomputable

nn 2n 2 22 , 2 , 2 , ...
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Steps to Proving Problem R is 
NP-complete

n Show R is NP-hard:  
n State:`Reduction is from NP-hard Problem 

L’
n Show what the map T is
n Argue that T is polynomial time
n Argue correctness:  two directions Yes for 

L implies Yes for R and vice versa. 
n Show R is in NP

n State what hint is and why it works
n Argue that it is polynomial-time to check.
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A particularly useful problem for 
proving NP-completeness

n 3-SAT: Given a CNF formula F having 
precisely 3 variables per clause
(i.e., in 3-CNF), is F satisfiable?

n Claim: 3-SAT is NP-complete
n Proof:

n 3-SAT∈NP
n Certificate is a satisfying assignment
n Just like Satisfiability it is polynomial-time to 

check the certificate

50

Satisfiability ≤P3-SAT

n Reduction:
n map CNF formula F to another CNF 

formula G that has precisely 3 variables 
per clause.
n G has one or more clauses for each 

clause of F
n G will have extra variables that don’t 

appear in F
n for each clause C of F there will be a 

different set of variables that are used only 
in the clauses of G that correspond to C

51

Satisfiability ≤P3-SAT

n Goal:
n An assignment a to the original variables makes 

clause C true in F iff
n there is an assignment to the extra variables that 

together with the assignment a will make all new 
clauses corresponding to C true.

n Define the reduction clause-by-clause
n We’ll use variable names zj to denote the extra 

variables related to a single clause C to simplify 
notation
n in reality, two different original clauses will not 

share zj
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Satisfiability ≤P3-SAT

n For each clause C in F:
n If C has 3 variables:

n Put C in G as is
n If C has 2 variables, e.g. C=(x1 ∨ ¬x3)

n Use a new variable z and put two clauses in G
(x1 ∨ ¬x3 ∨ z) ∧ (x1 ∨ ¬x3 ∨ ¬z)

n If original C is true under assignment a then 
both new clauses will be true under a

n If new clauses are both true under some 
assignment b then the value of z doesn’t help 
in one of the two clauses so C must be true 
under b
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Satisfiability ≤P3-SAT

n If C has 1 variable: e.g. C=x1

n Use two new variables z1, z2 and put 4
new clauses in G
(x1 ∨ ¬z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧
(x1 ∨ z1 ∨ ¬z2)  ∧ (x1 ∨ z1 ∨ z2)

n If original C is true under assignment a
then all new clauses will be true under a

n If new clauses are all true under some 
assignment b then the values of z1 and 
z2 don’t help in one of the 4 clauses so
C must be true under b

54

Satisfiability ≤P3-SAT

n If C has k ≥ 4 variables: e.g. C=(x1 ∨ ... ∨ xk)
n Use k-3 new variables z2,...,zk-2 and put k-2 new 

clauses in G
(x1 ∨ x2 ∨ z2) ∧ (¬z2 ∨ x3 ∨ z3) ∧ (¬z3 ∨ x4 ∨ z4) ∧ ... 
∧ (¬zk-3 ∨ xk-2 ∨ zk-2) ∧ (¬zk-2 ∨ xk-1 ∨ xk)

n If original C is true under assignment a then some 
xi is true for i ≤ k. By setting zj true for all j<i and 
false for all j ≥ i, we can extend a to make all new 
clauses true.

n If new clauses are all true under some assignment 
b then some xi must be true for i ≤ k because
z2 ∧ (¬z2 ∨ z3) ∧ ... ∧ (¬zk-3 ∨ zk-2) ∧ ¬zk-2 is not 
satisfiable
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Graph Colorability

n Defn: Given a graph G=(V,E), and an integer k, 
a k-coloring of G is
n an assignment of up to k different colors to the 

vertices of G so that the endpoints of each edge have 
different colors.

n 3-Color: Given a graph G=(V,E), does G have a 
3-coloring?

n Claim: 3-Color is NP-complete
n Proof: 3-Color is in NP:

n Hint is an assignment of red,green,blue to the 
vertices of G

n Easy to check that each edge is colored correctly

56

3-SAT ≤P3-Color

n Reduction:
n We want to map a 3-CNF formula F to a 

graph G so that
n G is 3-colorable iff F is satisfiable

57

3-SAT ≤P3-Color

O

TF

Base Triangle
58

3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn
Variable Part: 

in 3-coloring, variable
colors correspond to
some truth assignment 
(same color as T or F)

59

3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

Clause Part:  
Add one 6 vertex gadget per clause  connecting 
its ‘outer vertices’ to the literals in the clause

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨ x

3 ∨ x
6 )

60

3-SAT ≤P3-Color

Any truth assignment satisfying the formula 
can be extended to a 3-coloring of the graph

F
O

O

T
F

O

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨ x

3 ∨ x
6 )
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3-SAT ≤P3-Color

Any 3-coloring of the graph colors
each gadget triangle using each color

O

F

T

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨

x
3 ∨

x
6 )
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨ x

3 ∨ x
6 )

Any 3-coloring of the graph has an F opposite
the O color in the triangle of each gadget

O

F

T

F
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨ x

3 ∨ x
6 )

Any 3-coloring of the graph has T at the
other end of the blue edge connected to the F

O

F

T

F

T
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨ x

3 ∨ x
6 )

Any 3-coloring of the graph yields a 
satisfying assignment to the formula

O

F

T

F

T
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More NP-completeness

n Subset-Sum problem
n Given n integers w1,…,wn and integer W
n Is there a subset of the n input integers 

that adds up to exactly W?

n O(nW) solution from dynamic programming 
but if W and each wi can be n bits long then 
this is exponential time

66

3-SAT ≤PSubset-Sum

n Given a 3-CNF formula with m clauses 
and n variables

n Will create 2m+2n numbers that are 
m+n digits long
n Two numbers for each variable xi

n ti and fi (corresponding to xi being true 
or xi being false)

n Two extra numbers for each clause
n uj and vj (filler variables to handle 

number of false literals in clause Cj)
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3-SAT ≤PSubset-Sum

1 2 3 4 …  n  1 2 3 4 … m

i                   j

1 0 0 0 …  0  0 0 1 0 … 1

1 0 0 0 …  0  1 0 0 1 … 0

0 1 0 0 …  0  0 1 0 0 … 1

0 0 0 0 …  0  1 0 0 0 … 0

0 1 0 0 …  0  0 0 1 1 … 0

t1

f2

t2

f1

C4=(x1∨¬ x2∨ x5)

… ….
u1=v1

0 0 0 0 …  0  0 1 0 0 … 0u2=v2

… ….

1 1 1 1 …  1  3 3 3 3 … 3W

68

P vs NP

n Theory
n P = NP?
n Open Problem!
n Bet against it

n Practice
n Many interesting, useful, 

natural, well-studied 
problems known to be NP-
complete

n With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances


