

Computational Complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them
- Recall
 - worst-case running time of an algorithm
 - max # steps algorithm takes on any input of size n
- Define:
 - TIME(f(n)) to be the set of all decision problems solved by algorithms having worst-case running time O(f(n))

4

Decision problems

- Computational complexity usually analyzed using decision problems
 - answer is just 1 or 0 (yes or no).
- Why?
 - much simpler to deal with
 - deciding whether G has a path from s to t, is certainly no harder than finding a path from s to t in G, so a lower bound on deciding is also a lower bound on finding
 - Less important, but if you have a good decider, you can often use it to get a good finder.

Polynomial time

- Define P (polynomial-time) to be
 - the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
- $P = U_{k \ge 0} TIME(n^k)$

4

Beyond P?

- There are many natural, practical problems for which we don't know any polynomial-time algorithms
- e.g. decisionTSP:
 - Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in G having total weight at most k?

Relative Complexity of Problems

- Want a notion that allows us to compare the complexity of problems
 - Want to be able to make statements of the form

"If we could solve problem **R** in polynomial time then we can solve problem **L** in polynomial time"

"Problem R is at least as hard as problem I"

.

Polynomial Time Reduction

- L £p R if there is an algorithm for L using a 'black box' (subroutine) that solves R that
 - Uses only a polynomial number of steps
 - Makes only a polynomial number of calls to a subroutine for
- Thus, poly time algorithm for R implies poly time algorithm for L
 - Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!
- If you can prove there is no fast algorithm for L, then that proves there is no fast algorithm for R

A Special kind of Polynomial-Time Reduction

- We will always use a restricted form of polynomial-time reduction often called Karp or many-one reduction
- L≤¹_p R if and only if there is an algorithm for L given a black box solving R that on input x
 - Runs for polynomial time computing an input T(x)
 - Makes one call to the black box for R
 - Returns the answer that the black box gave

We say that the function T is the reduction

8

Why the name reduction?

- Weird: it maps an easier problem into a harder one
- Same sense as saying Maxwell reduced the problem of analyzing electricity & magnetism to solving partial differential equations
 - solving partial differential equations in general is a much harder problem than solving E&M problems

A geek joke

- An engineer
 - is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
 - she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.
- A mathematician
 - is placed in a kitchen with an empty kettle on the table and told to boil water; he fills the kettle with water, puts it on the stove, turns on the gas and boils water.
 - he is next confronted with a kettle full of water sitting on the counter and told to boil water: he empties the kettle in the sink, places the empty kettle on the table and says, "I've reduced this to an already solved problem".

10

Reductions from a Special Case to a General Case

- Show: Vertex-Cover ♣ Set-Cover
- Vertex-Cover:
 - Given an undirected graph G=(V,E) and an integer k is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G).
- Set-Cover:
 - Given a set U of n elements, a collection S₁,...,S_m of subsets of U, and an integer k, does there exist a collection of at most k sets whose union is equal to U?

The Simple Reduction

- Transformation T maps (G=(V,E),k) to (U,S₁,...,S_m,k')
 - _ U _ F
 - For each vertex v∈ V create a set S_v containing all edges that touch v
 - k'¬ k
- Reduction T is clearly polynomial-time to compute
- We need to prove that the resulting algorithm gives the right answer!

Proof of Correctness

- Two directions:
 - If the answer to Vertex-Cover on (G,k) is YES then the answer for Set-Cover on T(G,k) is YES
 - If a set W of k vertices covers all edges then the collection $\{S_v \mid v \hat{\mathbf{I}} \; W\}$ of k sets covers all of
 - If the answer to Set-Cover on T(G,k) is YES then the answer for Vertex-Cover on (G,k) is YES
 - If a subcollection S_{v1},...,S_{vk} covers all of U then the set {v₁,...,v_k} is a vertex cover in G.

13

Reductions by Simple Equivalence

- Show: Independent-Set ♣ Clique
- Independent-Set:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with |U| ≥ k such that no two vertices in U are joined by an edge.
- Clique
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with |U| ≥ k such that every pair of vertices in U is joined by an edge.

14

Independent-Set ≤_P Clique

- Given (G,k) as input to Independent-Set where G=(V,E)
- Transform to (G',k) where G'=(V,E')
 has the same vertices as G but E'
 consists of precisely those edges that
 are not edges of G
- U is an independent set in G
- ⇔ U is a clique in G'

15

More Reductions

- Show: Independent Set £ Vertex-Cover
- Vertex-Cover:
 - Given an undirected graph G=(V,E) and an integer k is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G).
- Independent-Set:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with |U| ≥ k such that no two vertices in U are joined by an edge.

16

Reduction Idea

- Claim: In a graph G=(V,E), S is an independent set iff V-S is a vertex cover
- Proof:
 - ⇒ Let S be an independent set in G
 - Then S contains at most one endpoint of each edge of G
 - At least one endpoint must be in V-S
 - V-S is a vertex cover
 - ←Let W=V-S be a vertex cover of G
 - Then S does not contain both endpoints of any edge (else W would miss that edge)
 - S is an independent set

17

Reduction

- Map (G,k) to (G,n-k)
 - Previous lemma proves correctness
- Clearly polynomial time
- We also get that
 - Vertex-Cover £ Independent Set

Satisfiability

- Boolean variables x₁,...,x_n
 - taking values in {0,1}. 0=false, 1=true
- Literals
 - x_i or $\emptyset x_i$ for i=1,...,n
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \vee \emptyset x_3 \vee x_7 \vee x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses

19

Satisfiability

- CNF formula example
 - $(x_1 \lor \emptyset x_3 \lor x_7 \lor x_{12}) \land (x_2 \lor \emptyset x_4 \lor x_7 \lor x_5)$
- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
 - the one above is, the following isn't
 - $\mathbf{x}_1 \wedge (\mathbf{\emptyset} \mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{\emptyset} \mathbf{x}_2 \vee \mathbf{x}_3) \wedge \mathbf{\emptyset} \mathbf{x}_3$
- Satisfiability: Given a CNF formula F, is it satisfiable?

20

Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find
- e.g.
 - DecisionTSP: the tour itself,
 - Independent-Set, Clique: the set U
 - Satisfiability: an assignment that makes F true.

21

The complexity class NP

NP consists of all decision problems where

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

And

 No certificate can fool your polynomial time verifier into saying YES for a NO instance

22

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure verify(.,.), and an integer k such that
 - for every input x to the problem that is a YES instance there is a certificate t with |t| ≤ |x|^k such that verify(x,t) = YES
 - for every input x to the problem that is a NO instance there does not exist a certificate t with |t| ≤ |x|^k such that verify(x,t) = YES

23

Example: CLIQUE is in NP

procedure verify(x,t)

if

x is a well-formed representation of a graph G = (V, E) and an integer k, and

t is a well-formed representation of a vertex subset **U** of **V** of size **k**,

and

U is a clique in **G**,

then output "YES"

else output "I'm unconvinced"

Is it correct?

For every $\mathbf{x} = (\mathbf{G}, \mathbf{k})$ such that \mathbf{G} contains a \mathbf{k} -clique, there is a certificate \mathbf{t} that will cause $\mathbf{verify}(\mathbf{x}, \mathbf{t})$ to say \mathbf{YES} ,

■ t = a list of the vertices in such a k-clique

And no certificate can fool **verify**(**x**,**x**) into saying **YES** if either

- x isn't well-formed (the uninteresting case)
- x = (G,k) but G does not have any cliques of size k (the interesting case)

25

Keys to showing that a problem is in NP

- What's the output? (must be YES/NO)
- What must the input look like?
- Which inputs need a YES answer?
 - Call such inputs YES inputs/YES instances
- For every given YES input, is there a certificate that would help?
 - OK if some inputs need no certificate
- For any given NO input, is there a fake certificate that would trick you?

26

Solving NP problems without hints

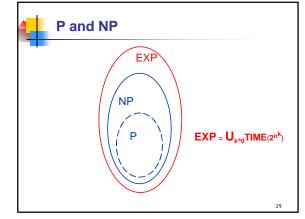
- The only obvious algorithm for most of these problems is brute force:
 - try all possible certificates and check each one to see if it works.
 - Exponential time:
 - 2ⁿ truth assignments for n variables
 - n! possible TSP tours of n vertices
 - $\begin{bmatrix} n \\ k \end{bmatrix}$ possible **k** element subsets of **n** vertices
 - etc.

7

What We Know

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does P=NP?
 - one of the most important open questions in all of science.
 - huge practical implications
- Every problem in P is in NP
 - one doesn't even need a certificate for problems in
 P so just ignore any hint you are given
- Every problem in NP is in exponential time

28



NP-hardness & NP-completeness

- Some problems in NP seem hard
 - people have looked for efficient algorithms for them for hundreds of years without success
- However
 - nobody knows how to prove that they are really hard to solve, i.e. P¹ NP

Problems in NP that seem hard

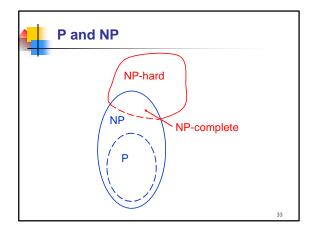
- Some Examples in NP
 - Satisfiability
 - Independent-Set
 - Clique
 - Vertex Cover
- All hard to solve; certificates seem to help on all
- Fast solution to any gives fast solution to all!

31

NP-hardness & **NP-completeness**

- Alternative approach to proving problems not
 - show that they are at least as hard as any problem
- Rough definition:
 - A problem is NP-hard iff it is at least as hard as any problem in NP
 - A problem is NP-complete iff it is both
 - NP-hard
 - in NP

32



NP-hardness & **NP-completeness**

- Definition: A problem R is NP-hard iff every problem LÎNP satisfies L £R
- Definition: A problem R is NP-complete iff R is NP-hard and R ÎNP
- Even though we seem to have lots of hard problems in NP it is not obvious that such super-hard problems even exist!

Cook's Theorem

- Theorem (Cook 1971): Satisfiability is **NP**-complete
- Recall
 - CNF formula
 - $\begin{tabular}{ll} \bullet & e.g. & (x_1 \lor \not 0 x_3 \lor x_7 \lor x_{12}) \land (x_2 \lor \not 0 x_4 \lor x_7 \lor x_5) \\ \bullet & If there is some assignment of 0's and 1's to the variables that makes it true then we say the \\ \end{tabular}$ formula is satisfiable
 - Satisfiability: Given a CNF formula F, is it satisfiable?

Implications of Cook's Theorem?

- There is at least one interesting superhard problem in NP
- Is that such a big deal?
- YES!
 - There are lots of other problems that can be solved if we had a polynomial-time algorithm for Satisfiability
 - Many of these problems are exactly as hard as Satisfiability

A useful property of polynomial-time reductions

- Theorem: If L L_pR and R L_pS then L L_pS
- Proof idea: (Using ≤)
 - Compose the reduction T from L to R with the reduction T' from R to S to get a new reduction T''(x)=T'(T(x)) from L to S.
 - The general case is similar and uses the fact that the composition of two polynomials is also a polynomial

37

Cook's Theorem & Implications

 Theorem (Cook 1971): Satisfiability is NP-complete

For proof see CSE 431

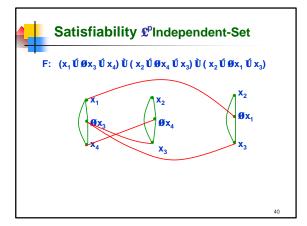
- Corollary: R is NP-hard ⇔ Satisfiability L_pR (or Q L_pR for any NP-complete problem Q)
- Proof:
 - If R is NP-hard then every problem in NP polynomial-time reduces to R, in particular Satisfiability does since it is in NP
 - For any problem L in NP, L ♣pSatisfiability and so if Satisfiability ♣pR we have L ♣p R.
 - therefore R is NP-hard if Satisfiability LPR

38

Another NP-complete problem: Satisfiability £pIndependent-Set

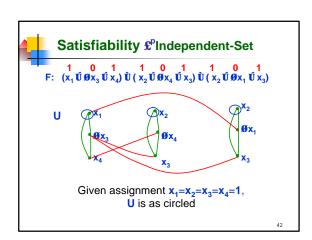
- A Tricky Reduction:
 - mapping CNF formula F to a pair <G,k>
 - Let m be the number of clauses of F
 - Create a vertex in G for each literal in F
 - Join two vertices u, v in G by an edge iff
 - u and v correspond to literals in the same clause of F, (green edges) or
 - u and v correspond to literals x and Øx (or vice versa) for some variable x. (red edges).
 - Set k=m
 - Clearly polynomial-time

39



Satisfiability £°Independent-Set

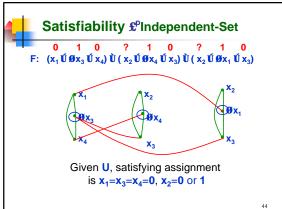
- Correctness
 - If F is satisfiable then there is some assignment that satisfies at least one literal in each clause.
 - Consider the set U in G corresponding to the first satisfied literal in each clause.
 - . |U|=m
 - Since U has only one vertex per clause, no two vertices in U are joined by green edges
 - Since a truth assignment never satisfies both x and Øx,
 U doesn't contain vertices labeled both x and Øx and so no vertices in U are joined by red edges
 - Therefore ${\bf G}$ has an independent set, ${\bf U},$ of size at least ${\bf m}$
 - Therefore (G,m) is a YES for independent set.



Satisfiability £ Independent-Set

- Correctness continued:
 - If (G,m) is a YES for Independent-Set then there is a set U of m vertices in G containing no edge.

 - Therefore U has precisely one vertex per clause because of the green edges in G.
 Because of the red edges in G, U does not contain vertices labeled both x and Øx
 - Build a truth assignment A that makes all literals labeling vertices in **U** true and for any variable not labeling a vertex in **U**, assigns its truth value arbitrarily.
 - By construction, A satisfies F
 - Therefore F is a YES for Satisfiability.



Independent-Set is NP-complete

- We just showed that Independent-Set is NPhard and we already knew Independent-Set is in NP.
- Corollary: Clique is NP-complete
 - We showed already that Independent-Set £ Clique and Clique is in NP.

Problems we already know are NPcomplete

- Satisfiability
- Independent-Set
- Clique
- Vertex-Cover
- There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
 - Some problems provably require exponential time.
 - Ex: Does P halt on x in 2|x| steps?
 - Some require 2ⁿ, 2^{2ⁿ}, 2^{2^{2ⁿ}}, ... steps
 - And of course, some are just plain uncomputable

Steps to Proving Problem R is **NP-complete**

- Show R is NP-hard:
 - State: Reduction is from NP-hard Problem
 - Show what the map T is
 - Argue that T is polynomial time
 - Argue correctness: two directions Yes for L implies Yes for R and vice versa.
- Show R is in NP
 - State what hint is and why it works
 - Argue that it is polynomial-time to check.

A particularly useful problem for proving NP-completeness

- 3-SAT: Given a CNF formula F having precisely 3 variables per clause (i.e., in 3-CNF), is F satisfiable?
- Claim: 3-SAT is NP-complete
- Proof:
 - 3-SATÎ NP
 - Certificate is a satisfying assignment
 - Just like Satisfiability it is polynomial-time to check the certificate

49

Satisfiability £,3-SAT

- Reduction:
 - map CNF formula F to another CNF formula G that has precisely 3 variables per clause.
 - G has one or more clauses for each clause of F
 - G will have extra variables that don't appear in F
 - for each clause C of F there will be a different set of variables that are used only in the clauses of G that correspond to C

50

Satisfiability £p3-SAT

- Goal
 - An assignment a to the original variables makes clause C true in F iff
 - there is an assignment to the extra variables that together with the assignment a will make all new clauses corresponding to C true.
- Define the reduction clause-by-clause
 - We'll use variable names z_j to denote the extra variables related to a single clause C to simplify notation
 - in reality, two different original clauses will not share z.

51

Satisfiability £,3-SAT

- For each clause C in F:
- If C has 3 variables:
 - Put C in G as is
- If C has 2 variables, e.g. C=(x₁ Ú Øx₃)
 - Use a new variable z and put two clauses in G $(x_1 \not \cup \emptyset x_3 \not \cup z) \wedge (x_1 \not \cup \emptyset x_3 \not \cup \emptyset z)$
 - If original C is true under assignment a then both new clauses will be true under a
 - If new clauses are both true under some assignment b then the value of z doesn't help in one of the two clauses so C must be true under b

52

Satisfiability £,3-SAT

- If C has 1 variable: e.g. C=x₁
 - Use two new variables $\mathbf{z_1}$, $\mathbf{z_2}$ and put 4 new clauses in \mathbf{G} ($\mathbf{x_1} \ \mathbf{\mathring{U}} \ \mathbf{\mathcal{G}} \mathbf{z_1} \ \mathbf{\mathring{U}} \ \mathbf{\mathcal{G}} \mathbf{z_2}$) \wedge ($\mathbf{x_1} \ \mathbf{\mathring{U}} \ \mathbf{z_1} \ \mathbf{\mathring{U}} \ \mathbf{\mathcal{G}} \mathbf{z_2}$) \wedge ($\mathbf{x_1} \ \mathbf{\mathring{U}} \ \mathbf{z_1} \ \mathbf{\mathring{U}} \ \mathbf{\mathcal{G}} \mathbf{z_2}$) \wedge ($\mathbf{x_1} \ \mathbf{\mathring{U}} \ \mathbf{z_1} \ \mathbf{\mathring{U}} \ \mathbf{\mathcal{G}} \mathbf{z_2}$)
 - If original C is true under assignment a then all new clauses will be true under a
 - If new clauses are all true under some assignment b then the values of z₁ and z₂ don't help in one of the 4 clauses so C must be true under b

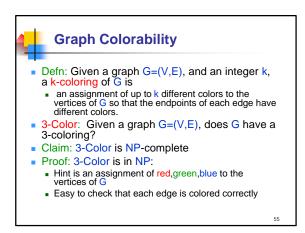
53

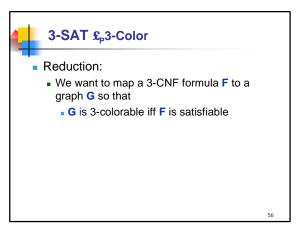
Satisfiability £,3-SAT

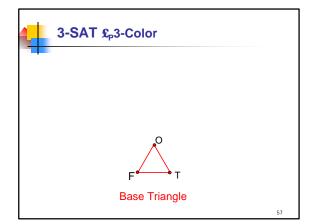
- If C has k³ 4 variables: e.g. C=(x₁ Ú ... Ú x_k)
 - Use k-3 new variables z₂,...,z_{k-2} and put k-2 new clauses in G

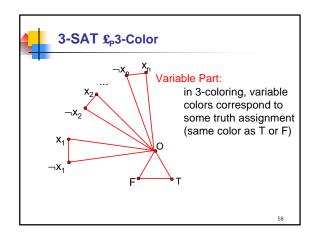
 $\begin{array}{l} (\textbf{X}_{1} \vec{\textbf{U}} \ \textbf{X}_{2} \vec{\textbf{U}} \ \textbf{z}_{2}) \ \wedge \ (\textbf{\varnothing} \textbf{z}_{2} \vec{\textbf{U}} \ \textbf{X}_{3} \vec{\textbf{U}} \ \textbf{z}_{3}) \ \wedge \ (\textbf{\varnothing} \textbf{z}_{3} \ \vec{\textbf{U}} \ \textbf{X}_{4} \ \vec{\textbf{U}} \ \textbf{z}_{4}) \ \wedge \ \dots \\ \wedge \ (\textbf{\varnothing} \textbf{z}_{k \cdot 3} \ \vec{\textbf{U}} \ \textbf{x}_{k \cdot 2} \ \vec{\textbf{U}} \ \textbf{z}_{k \cdot 2}) \ \wedge \ (\textbf{\varnothing} \textbf{z}_{k \cdot 2} \ \vec{\textbf{U}} \ \textbf{x}_{k \cdot 1} \ \vec{\textbf{U}} \ \textbf{x}_{k}) \end{array}$

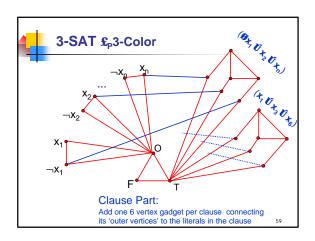
- If original C is true under assignment a then some x_i is true for i £k. By setting z_j true for all j < i and false for all $j \ge i$, we can extend a to make all new clauses true.
- If new clauses are all true under some assignment b then some \mathbf{x}_1 must be true for $i \leq k$ because $\mathbf{z}_2 \wedge (\boldsymbol{\varnothing}\mathbf{z}_2 \mathbf{u}^{'}\mathbf{z}_3) \wedge ... \wedge (\boldsymbol{\varnothing}\mathbf{z}_{k\cdot 3} \mathbf{u}^{'}\mathbf{z}_{k\cdot 2}) \wedge \boldsymbol{\varnothing}\mathbf{z}_{k\cdot 2}$ is not satisfiable

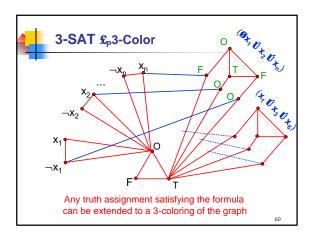


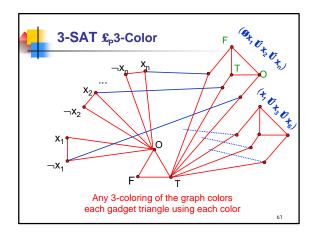


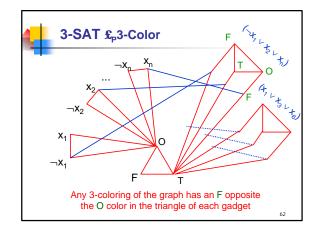


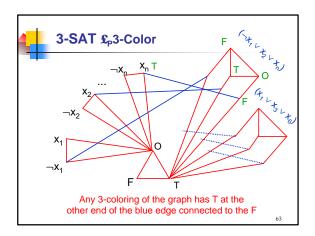


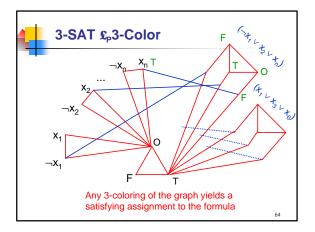












More NP-completeness

- Subset-Sum problem
 - Given n integers w₁,...,w_n and integer W
 - Is there a subset of the n input integers that adds up to exactly W?
- O(nW) solution from dynamic programming but if W and each w_i can be n bits long then this is exponential time

3-SAT £pSubset-Sum

- Given a 3-CNF formula with m clauses and n variables
- Will create 2m+2n numbers that are m+n digits long
 - Two numbers for each variable x_i
 - t_i and f_i (corresponding to x_i being true or x_i being false)
 - Two extra numbers for each clause
 - u_j and v_j (filler variables to handle number of false literals in clause C_j)

