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CSE 421:  Introduction to 
Algorithms

Graphs & Graph Traversal

Winter 2003
Paul Beame
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Undirected Graph   G = (V,E)
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Directed Graph G = (V,E)
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Representing Graph  G=(V,E)
n vertices,  m edges

n Vertex set V={v1,...,vn}
n Adjacency Matrix   A

n A[i,j]=1 iff (vi,vj) ∈ E
n Space is n2 bits

n Advantages: 
n O(1) test for presence or absence of edges.
n compact in packed binary form for large m

n Disadvantages: 
n inefficient for sparse graphs
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Representing Graph  G=(V,E)
n vertices,  m edges

n Adjacency List:
n O(n+m) words
n O(log n) bits each

n Advantages:
n Compact for sparse graphs
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Representing Graph  G=(V,E)
n vertices,  m edges

n Adjacency List:
n O(n+m) words
n O(log n) bits each

n Back- and cross pointers more work to build, but 
allow easier traversal and deletion of edges
n usually assume this format
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Graph Traversal

n Learn the basic structure of a graph
n Walk from a fixed starting vertex s to 

find all vertices reachable from s

n Three states of vertices
n unvisited
n visited
n fully-explored
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Generic Graph Traversal Algorithm

Find: set R of vertices reachable from s∈V

Reachable(s):
R← {s}
While there is a (u,v)∈E where u∈R and v∉R

Add v to R
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Generic Traversal Always Works

n Claim: At termination R is the set of nodes 
reachable from s

n Proof
n ⊆: For every node v∈R there is a path from s to v
n ⊇: Suppose there is a node w∉R reachable from s

via a path P
n Take first node v on P such that v∉R
n Predecessor u of v in P satisfies

n u ∈ R
n (u,v)∈E

n But this contradicts the fact that the algorithm 
exited the while loop. 
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Breadth-First Search

n Completely explore the vertices in order 
of their distance from s

n Naturally implemented using a queue
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BFS(s)

Global initialization: mark all vertices “unvisited”
BFS(s)

mark  s “visited”; R←{s}; layer L0←{s}
while Li not empty

Li+1 ←∅
For each u∈Li

for each edge {u,v}
if (v is “unvisited”) 

mark v “visited”
Add v to set R and to layer Li+1

mark u “fully-explored”
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BFS(s)
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BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
1  

14

BFS(s)
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BFS(s)
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BFS(s)
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BFS(s)
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BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
10 11 12 13

20

BFS(s)
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BFS analysis

n Each edge is explored once from each 
end-point (at most)

n Each vertex is discovered by following a 
different edge

n Total cost O(m) where m=# of edges
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Properties of BFS(v)

n BFS(s) visits x if and only if there is a path in G from 
s to x.

n Edges followed to undiscovered vertices define a 
tree
n "breadth first spanning tree" of G

n Layer i in this tree, Li

n those vertices u such that the shortest path in G
from the root s is of length i.

n On undirected graphs
n All non-tree edges join vertices on the same or 

adjacent layers
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Properties of BFS

n On undirected graphs
n All non-tree edges join vertices on the 

same or adjacent layers

n Suppose not
n Then there would be vertices (x,y) such that 

x∈Li and y∈Lj and i<j-1
n Then, when vertices incident to x are 

considered in BFS y would be added to Li+1
and not to Lj
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BFS Application: Shortest Paths
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Graph Search Application: 
Connected Components

n Want to answer questions of the 
form:
n Given: vertices u and v in G
n Is there a path from u to v?

n Idea: create array A such that                  
A[u] = smallest numbered vertex 

that is connected to u
n question reduces to whether A[u]=A[v]?

Q: Why 
not create 
an array 
Path[u,v]?
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Graph Search Application: 
Connected Components

n initial state: all v unvisited
for s←1 to n do                                          

if state(s) ≠ “fully-explored” then                                 
BFS(s): setting A[u] ←s for each u found 

(and marking u visited/fully-explored)         
endif

endfor

n Total cost: O(n+m)
n each vertex is touched once in this outer 

procedure and the edges examined in the different 
BFS runs are disjoint

n works also with Depth First Search
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Depth-First Search

n Follow the first path you find as far as 
you can go

n Back up to last unexplored edge when 
you reach a dead end, then go as far 
you can 

n Naturally implemented using recursive 
calls or a stack
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DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"
DFS(u)

mark u “visited” and add u to R
for each edge {u,v}

if (v is “unvisited”)
DFS(v)

end for
mark u “fully-explored”
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DFS(u)
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DFS(u)
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DFS(u)
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Properties of DFS(s)

n Like BFS(s):
n DFS(s) visits x if and only if there is a path in G

from s to x
n Edges into undiscovered vertices define a tree

n "depth first spanning tree" of G
n Unlike the BFS tree: 

n the DFS spanning tree isn't minimum depth
n its levels don't reflect min distance from the root
n non-tree edges never join vertices on the same or 

adjacent levels
n BUT…
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Non-tree edges

n All non-tree edges join a vertex and one 
of its descendents/ancestors in the DFS 
tree

n No cross edges!
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No cross edges in DFS on undirected 
graphs

n Claim: During DFS(x) every vertex marked visited is 
a descendant of x in the DFS tree T

n Claim: For every x,y in the DFS tree T,  if (x,y) is an 
edge not in T then one of x or y is an ancestor of the 
other in T

n Proof: 
n One of x or y is visited first, suppose WLOG that x is visited 

first and therefore DFS(x) was called before DFS(y)
n During DFS(x), the edge (x,y) is examined

n Since (x,y) is a not an edge of T, y was visited when the 
edge (x,y) was examined during DFS(x)

n Therefore y was visited during the call to DFS(x) so y is a 
descendant of x.
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Applications of Graph Traversal:
Bipartiteness Testing

n Easy: A graph G is not bipartite if it contains 
an odd length cycle

n WLOG: G is connected
n Otherwise run on each component

n Simple idea: start coloring nodes starting at a 
given node s
n Color s red
n Color all neighbors of s blue
n Color all their neighbors red
n If you ever hit a node that was already colored

n the same color as you want to color it, ignore it
n the opposite color, output error
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BFS gives Bipartiteness

n Run BFS assigning all vertices from 
layer Li the color i mod 2
n i.e. red if they are in an even layer, blue if 

in an odd layer 

n If there is an edge joining two vertices 
from the same layer then output “Not 
Bipartite”
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Why does it work?

s

Li

LjLj

u v

u and v have a common ancestor

Cycle length 2(j-i)+1
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Application: Cut Points

n A node in an undirected graph is an cut
point iff removing it disconnects the 
graph

n cut points represent vulnerabilities in a 
network – single points whose failure 
would split the network into 2 or more 
disconnected components
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Cut Points
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Cut Points from DFS

n Non-tree edges eliminate cut points

n Root node r is cut point ⇔ it has more than one child 
in the DFS tree T

n If r has only one child in T, call it u
n every node in T is reachable from u so removing r leaves 

T connected
n Is r has more than one child, the fact that there are no cross 

edges means removing r disconnects the graph
n Leaf nodes are never cut points, more generally…

n Non-root node u is a cut point ⇔
n There is some child v of u that does not have a non-tree

edge leading from the subtree rooted at v to above u in the 
tree
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Understanding cut points

n Notation:
n For nodes u and v write u ≤ v if u is visited before 

v during a given DFS, 
n “u is earlier than v in the DFS”

n For a node u, define earliest(u) to be the earliest 
node that is adjacent to some node in the subtree 
of the DFS tree rooted at u.

n Characterization:
n Non-root node u is a cut point ⇔ there is some 

child v of u such that u ≤ earliest(v)
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Proving characterization

n Suppose there is some child v of u such 
that u ≤ earliest(v)
n Let X be set of nodes in subtree rooted at v
n Only tree edge out of X goes to u
n Any non-tree edges out of X must go up 

the tree but no earlier than u so can at best 
go to u

n ∴ Removing u disconnects X from the rest 
of the graph

n ∴ u is a cut point
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Proving characterization

n Suppose every child v of u has earliest(v)<u
n Let G’ be G-{u}
n Claim: u is not a cut point, i.e., G’ is connected
n We will find paths in G’ from r to each node w of 

G’
n If w≠u is not in subtree rooted at u then the 

original path is still there
n If w≠u is in the subtree rooted at u then w lies in 

some subtree, call it Tv, below some child v of u
n Since earliest(v)<u there is a path from r to 

earliest(v) and from earliest(v) to some node 
of Tv and therefore to w
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Implementing Cut Points from DFS

n Number each node v, dfsnum(v) to get order
n For each vertex v compute 

n earliest(v)
n the smallest number of a node pointed at by 

any descendant of v in the DFS tree (including 
v itself)

n Can compute earliest(v) for every v during DFS at 
minimal extra cost

n Non-root node u is a cut point ⇔ for some child v of 
u

n dfsnum(u)≤earliest(v)
n Easy to compute and check during DFS
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DFS(v)

Global Initialization: 
mark all vertices u "unvisited” via dfsnum[u] ← -1
dfscounter ← 0

DFS(v)

dfscounter ← dfscounter+1
dfsnum[v] ← dfscounter // mark  v “visited”
for each edge (v,x)

if (dfsnum[x] = -1) // x previously  unvisited
add edge (v,x) to DFStree
DFS(x)

// mark v “fully-explored”
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DFS(v) for Finding Cut Points

Global initialization: dfsnum[u] ← -1 for all u; dfscounter ←0
DFS(v)
dfscounter ← dfscounter+1
dfsnum[v] ← dfscounter
earliest[v] ← dfsnum[v] // initialization
for each edge {v,x}

if (dfsnum[x] = -1)  // x is unvisited
DFS(x)
if (earliest[x] ≥ dfsnum[v])

print “v is a cut point, separating x” 
earliest[v] ← min(earliest[v], earliest[x])

else if (x is not v’s parent)
earliest[v] ← min(earliest[v], dfsnum[x])

Check that {v,x} 
is a non-tree edge

Note: need a separate check for the root
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Cut Points
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DFS(v) for a directed graph
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DFS(v)
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Properties of Directed DFS

n Before DFS(s) returns, it visits all 
previously unvisited vertices reachable 
via directed paths from s

n Every cycle contains a back edge in the 
DFS tree
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Directed Acyclic Graphs

n A directed graph G=(V,E) is acyclic if it 
has no directed cycles

n Terminology: A directed acyclic graph is 
also called a DAG
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Topological Sort

n Given: a directed acyclic graph (DAG) G=(V,E)
n Output: numbering of the vertices of G with 

distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices

n Applications
n nodes represent tasks
n edges represent precedence between tasks
n topological sort gives a sequential schedule 

for solving them 
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Directed Acyclic Graph
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In-degree 0 vertices

n Every DAG has a vertex of in-degree 0
n Proof: By contradiction

n Suppose every vertex has some incoming edge
n Consider following procedure:

while (true) do
v←some predecessor of v

n After n+1 steps where n=|V| there will be a 
repeated vertex
n This yields a cycle, contradicting that it is a 

DAG
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Topological Sort

n Can do using DFS

n Alternative simpler idea:
n Any vertex of in-degree 0 can  be given 

number 1 to start
n Remove it from the graph and then give a 

vertex of in-degree 0 number 2, etc. 
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Implementing Topological Sort

n Go through all edges, computing in-degree 
for each vertex     O(m+n)

n Maintain a queue (or stack) of vertices of           
in-degree 0

n Remove any vertex in queue and number it
n When a vertex is removed, decrease in-

degree of each of its neighbors by 1 and add 
them to the queue if their degree drops to 0

n Total cost O(m+n)


