
1

1

CSE 421: Introduction to
Algorithms

Graphs & Graph Traversal

Winter 2003
Paul Beame

2

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

3

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

4

Representing Graph G=(V,E)
n vertices, m edges

n Vertex set V={v1,...,vn}
n Adjacency Matrix A

n A[i,j]=1 iff (vi,vj) ∈ E
n Space is n2 bits

n Advantages:
n O(1) test for presence or absence of edges.
n compact in packed binary form for large m

n Disadvantages:
n inefficient for sparse graphs

5

Representing Graph G=(V,E)
n vertices, m edges

n Adjacency List:
n O(n+m) words
n O(log n) bits each

n Advantages:
n Compact for sparse graphs

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6

6

Representing Graph G=(V,E)
n vertices, m edges

n Adjacency List:
n O(n+m) words
n O(log n) bits each

n Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges
n usually assume this format

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6

2

7

Graph Traversal

n Learn the basic structure of a graph
n Walk from a fixed starting vertex s to

find all vertices reachable from s

n Three states of vertices
n unvisited
n visited
n fully-explored

8

Generic Graph Traversal Algorithm

Find: set R of vertices reachable from s∈V

Reachable(s):
R← {s}
While there is a (u,v)∈E where u∈R and v∉R

Add v to R

9

Generic Traversal Always Works

n Claim: At termination R is the set of nodes
reachable from s

n Proof
n ⊆: For every node v∈R there is a path from s to v
n ⊇: Suppose there is a node w∉R reachable from s

via a path P
n Take first node v on P such that v∉R
n Predecessor u of v in P satisfies

n u ∈ R
n (u,v)∈E

n But this contradicts the fact that the algorithm
exited the while loop.

10

Breadth-First Search

n Completely explore the vertices in order
of their distance from s

n Naturally implemented using a queue

11

BFS(s)

Global initialization: mark all vertices “unvisited”
BFS(s)

mark s “visited”; R←{s}; layer L0←{s}
while Li not empty

Li+1 ←∅
For each u∈Li

for each edge {u,v}
if (v is “unvisited”)

mark v “visited”
Add v to set R and to layer Li+1

mark u “fully-explored”

12

BFS(s)

3

13

BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
1

14

BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
2 3

15

BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
3 4

16

BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
4 5 6 7

17

BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
5 6 7 8 9

18

BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
8 9 10 11

4

19

BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
10 11 12 13

20

BFS(s)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:

21

BFS analysis

n Each edge is explored once from each
end-point (at most)

n Each vertex is discovered by following a
different edge

n Total cost O(m) where m=# of edges

22

Properties of BFS(v)

n BFS(s) visits x if and only if there is a path in G from
s to x.

n Edges followed to undiscovered vertices define a
tree
n "breadth first spanning tree" of G

n Layer i in this tree, Li

n those vertices u such that the shortest path in G
from the root s is of length i.

n On undirected graphs
n All non-tree edges join vertices on the same or

adjacent layers

23

Properties of BFS

n On undirected graphs
n All non-tree edges join vertices on the

same or adjacent layers

n Suppose not
n Then there would be vertices (x,y) such that

x∈Li and y∈Lj and i<j-1
n Then, when vertices incident to x are

considered in BFS y would be added to Li+1
and not to Lj

24

BFS Application: Shortest Paths

1

2 3

10

5

4

9

12

8

13

6
7

11

0

1

2

3

4
can label by distances from start

Tree gives shortest
paths from start vertex

5

25

Graph Search Application:
Connected Components

n Want to answer questions of the
form:
n Given: vertices u and v in G
n Is there a path from u to v?

n Idea: create array A such that
A[u] = smallest numbered vertex

that is connected to u
n question reduces to whether A[u]=A[v]?

Q: Why
not create
an array
Path[u,v]?

26

Graph Search Application:
Connected Components

n initial state: all v unvisited
for s←1 to n do

if state(s) ≠ “fully-explored” then
BFS(s): setting A[u] ←s for each u found

(and marking u visited/fully-explored)
endif

endfor

n Total cost: O(n+m)
n each vertex is touched once in this outer

procedure and the edges examined in the different
BFS runs are disjoint

n works also with Depth First Search

27

Depth-First Search

n Follow the first path you find as far as
you can go

n Back up to last unexplored edge when
you reach a dead end, then go as far
you can

n Naturally implemented using recursive
calls or a stack

28

DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"
DFS(u)

mark u “visited” and add u to R
for each edge {u,v}

if (v is “unvisited”)
DFS(v)

end for
mark u “fully-explored”

29

DFS(u)

30

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

6

31

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

1

32

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

2
1

33

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

34

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13
4
3
2
1

35

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

5
4
3
2
1

36

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

6
5
4
3
2
1

7

37

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

5
4
3
2
1

38

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13
4
3
2
1

39

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

40

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

2
1

41

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

42

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13
8
3
2
1

8

43

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

44

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13
8
3
2
1

45

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

10
8
3
2
1

46

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

11
10

8
3
2
1

47

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

12
11
10

8
3
2
1

48

DFS(u)

1

2
10

9

8

3

7

6

4

5

11
12

13

9

49

Properties of DFS(s)

n Like BFS(s):
n DFS(s) visits x if and only if there is a path in G

from s to x
n Edges into undiscovered vertices define a tree

n "depth first spanning tree" of G
n Unlike the BFS tree:

n the DFS spanning tree isn't minimum depth
n its levels don't reflect min distance from the root
n non-tree edges never join vertices on the same or

adjacent levels
n BUT…

50

Non-tree edges

n All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

n No cross edges!

51

No cross edges in DFS on undirected
graphs

n Claim: During DFS(x) every vertex marked visited is
a descendant of x in the DFS tree T

n Claim: For every x,y in the DFS tree T, if (x,y) is an
edge not in T then one of x or y is an ancestor of the
other in T

n Proof:
n One of x or y is visited first, suppose WLOG that x is visited

first and therefore DFS(x) was called before DFS(y)
n During DFS(x), the edge (x,y) is examined

n Since (x,y) is a not an edge of T, y was visited when the
edge (x,y) was examined during DFS(x)

n Therefore y was visited during the call to DFS(x) so y is a
descendant of x.

52

Applications of Graph Traversal:
Bipartiteness Testing

n Easy: A graph G is not bipartite if it contains
an odd length cycle

n WLOG: G is connected
n Otherwise run on each component

n Simple idea: start coloring nodes starting at a
given node s
n Color s red
n Color all neighbors of s blue
n Color all their neighbors red
n If you ever hit a node that was already colored

n the same color as you want to color it, ignore it
n the opposite color, output error

53

BFS gives Bipartiteness

n Run BFS assigning all vertices from
layer Li the color i mod 2
n i.e. red if they are in an even layer, blue if

in an odd layer

n If there is an edge joining two vertices
from the same layer then output “Not
Bipartite”

54

Why does it work?

s

Li

LjLj

u v

u and v have a common ancestor

Cycle length 2(j-i)+1

10

55

Application: Cut Points

n A node in an undirected graph is an cut
point iff removing it disconnects the
graph

n cut points represent vulnerabilities in a
network – single points whose failure
would split the network into 2 or more
disconnected components

56

Cut Points

1

2
10

9

8

3

7

6

4

5

11
12

13

57

Cut Points

1
2

109

8

3

7

6

4

5

11
12

13
58

Cut Points from DFS

n Non-tree edges eliminate cut points

n Root node r is cut point ⇔ it has more than one child
in the DFS tree T

n If r has only one child in T, call it u
n every node in T is reachable from u so removing r leaves

T connected
n Is r has more than one child, the fact that there are no cross

edges means removing r disconnects the graph
n Leaf nodes are never cut points, more generally…

n Non-root node u is a cut point ⇔
n There is some child v of u that does not have a non-tree

edge leading from the subtree rooted at v to above u in the
tree

59

Understanding cut points

n Notation:
n For nodes u and v write u ≤ v if u is visited before

v during a given DFS,
n “u is earlier than v in the DFS”

n For a node u, define earliest(u) to be the earliest
node that is adjacent to some node in the subtree
of the DFS tree rooted at u.

n Characterization:
n Non-root node u is a cut point ⇔ there is some

child v of u such that u ≤ earliest(v)

60

Proving characterization

n Suppose there is some child v of u such
that u ≤ earliest(v)
n Let X be set of nodes in subtree rooted at v
n Only tree edge out of X goes to u
n Any non-tree edges out of X must go up

the tree but no earlier than u so can at best
go to u

n ∴ Removing u disconnects X from the rest
of the graph

n ∴ u is a cut point

11

61

Proving characterization

n Suppose every child v of u has earliest(v)<u
n Let G’ be G-{u}
n Claim: u is not a cut point, i.e., G’ is connected
n We will find paths in G’ from r to each node w of

G’
n If w≠u is not in subtree rooted at u then the

original path is still there
n If w≠u is in the subtree rooted at u then w lies in

some subtree, call it Tv, below some child v of u
n Since earliest(v)<u there is a path from r to

earliest(v) and from earliest(v) to some node
of Tv and therefore to w

62

Implementing Cut Points from DFS

n Number each node v, dfsnum(v) to get order
n For each vertex v compute

n earliest(v)
n the smallest number of a node pointed at by

any descendant of v in the DFS tree (including
v itself)

n Can compute earliest(v) for every v during DFS at
minimal extra cost

n Non-root node u is a cut point ⇔ for some child v of
u

n dfsnum(u)≤earliest(v)
n Easy to compute and check during DFS

63

DFS(v)

Global Initialization:
mark all vertices u "unvisited” via dfsnum[u] ← -1
dfscounter ← 0

DFS(v)

dfscounter ← dfscounter+1
dfsnum[v] ← dfscounter // mark v “visited”
for each edge (v,x)

if (dfsnum[x] = -1) // x previously unvisited
add edge (v,x) to DFStree
DFS(x)

// mark v “fully-explored”

64

DFS(v) for Finding Cut Points

Global initialization: dfsnum[u] ← -1 for all u; dfscounter ←0
DFS(v)
dfscounter ← dfscounter+1
dfsnum[v] ← dfscounter
earliest[v] ← dfsnum[v] // initialization
for each edge {v,x}

if (dfsnum[x] = -1) // x is unvisited
DFS(x)
if (earliest[x] ≥ dfsnum[v])

print “v is a cut point, separating x”
earliest[v] ← min(earliest[v], earliest[x])

else if (x is not v’s parent)
earliest[v] ← min(earliest[v], dfsnum[x])

Check that {v,x}
is a non-tree edge

Note: need a separate check for the root

65

Cut Points

1
2

109

8

3

7

6

4

5

11
12

13

DFS # Earliest
1
2
3
4
5
6
7
8
9

10
11
12
13

66

Cut Points

1
2

109

8

3

7

6

4

5

11
12

13

DFS # Early Cut
1 1
2 1
3 1 Y
4 3
5 3
6 3
7 3
8 1 Y
9 9

10 1 Y
11 10
12 10 Y
13 13

12

67

DFS(v) for a directed graph

1

2
10

9

8

3

4

5
6

7

11
12

13

68

DFS(v)

1

2
10

9

8

3

4

5
6

7

11
12

13

tree edges

back edges

forward
edges

← cross edges

NO → cross edges

69

Properties of Directed DFS

n Before DFS(s) returns, it visits all
previously unvisited vertices reachable
via directed paths from s

n Every cycle contains a back edge in the
DFS tree

70

Directed Acyclic Graphs

n A directed graph G=(V,E) is acyclic if it
has no directed cycles

n Terminology: A directed acyclic graph is
also called a DAG

71

Topological Sort

n Given: a directed acyclic graph (DAG) G=(V,E)
n Output: numbering of the vertices of G with

distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices

n Applications
n nodes represent tasks
n edges represent precedence between tasks
n topological sort gives a sequential schedule

for solving them

72

Directed Acyclic Graph

13

73

In-degree 0 vertices

n Every DAG has a vertex of in-degree 0
n Proof: By contradiction

n Suppose every vertex has some incoming edge
n Consider following procedure:

while (true) do
v←some predecessor of v

n After n+1 steps where n=|V| there will be a
repeated vertex
n This yields a cycle, contradicting that it is a

DAG

74

Topological Sort

n Can do using DFS

n Alternative simpler idea:
n Any vertex of in-degree 0 can be given

number 1 to start
n Remove it from the graph and then give a

vertex of in-degree 0 number 2, etc.

75

Topological Sort

1

76

Topological Sort

1 2

77

Topological Sort

1

3

2

78

Topological Sort

1

4
3

2

14

79

Topological Sort

1

4
3

5

2

80

Topological Sort

1

4
3

5
6

2

81

Topological Sort

1

4
3

5
6

7

2

82

Topological Sort

1

4
3

8

5
6

7

2

83

Topological Sort

1

4
3

8

9

5
6

7

2

84

Topological Sort

1

4
3

10

8

9

5
6

7

2

15

85

Topological Sort

1

4
3

10

8

9

11

5
6

7

2

86

Topological Sort

1

4
3

12

10

8

9

11

5
6

7

2

87

Topological Sort

1

4
3

12

10

8

9

11
13

5
6

7

2

88

Topological Sort

1

4
3

12

10

8

9

11
13

14

5
6

7

2

89

Implementing Topological Sort

n Go through all edges, computing in-degree
for each vertex O(m+n)

n Maintain a queue (or stack) of vertices of
in-degree 0

n Remove any vertex in queue and number it
n When a vertex is removed, decrease in-

degree of each of its neighbors by 1 and add
them to the queue if their degree drops to 0

n Total cost O(m+n)

