CSE 421: Introduction to
Algorithms

Network Flow

Winter 2003
Paul Beame

4 Bipartite Matching

= Given: A bipartite graph G=(V,E)
= Mi Eis amatching in G iff no two edges
in M share a vertex

= Goal: Find a matching M in G of
maximum possible size

4 Bipartite Matching

! | The Network Flow Problem

= How much stuff can flow from s to t?

Bipartite matching as a special case

‘Q of flow




Given: Eind:
Adigraph G = (V,E)  Aflow function f: E® R s.t., for all
Two vertices s,tinv WV
(source & sink) = 0 £f(u,v) £c(u,v)
A capacity C(U,V) 30 [Capacity Constraint]
for each (uv)T E = ifut st ie. fout(u)=fin(u)
(and c(u,v) = O for all [Flow Conservation]

non-edges (u.v) Maximizing total flow n(f) = foui(s)

4 Example: A Flow Function

flow/capacity, not .66...

O—22()—2 ()
fin(u):f(s , u):2:f(u ,t):fout(u)

4 Max Flow via a Greedy Alg?
While thereisan s ® t pathin G
Pick such a path, p
Find c, the min capacity of any edge in p
Subtract ¢ from all capacities on p
Delete edges of capacity O

= This does NOT always find a max flow:

If picks®b®a®t
first, flow stuck at 2.
But flow 3 possible.

10

Notation:
in -2 out -8
TV =a e fUV) PRV = e fVW)
7
q ‘ Example: A Flow Function
= Not shown: f(u,v) if =0
= Note: max flow 3 4 since
fis a flow function, with n(f) = 4
9
bounds
| # | year | discoverer(s) bawed
[ 1] 1951 | Dantzig O(n’mU)
2 | 1955 | Ford & Fulkerson O(nmU)
3 [ 1970 | Dinitz. O(nm?)
|| Edmonds & Karp
[ 4| 1970 | Dimitz O(nm)
5 | 1972 | Edmonds & Karp O(mTlogU)
Dinitz
5 1973 | Dinitz OlnmlogU)
abow
[ 7| 1974 | Karzanov %)
5 1077 | Chorkasiy VDN
1980 alil & Naamad (nmlog” n)
1983 | Sleator & Tarjan (nm log n)
1 oldberg & Tarjan g(n?/m)
[12] 198 ja & Orlin (nm + n7log U) n =# of vertices
[13 [ 1987 | Ahuja et al. T flog U/ (m +2)) m= # of edges
1989 i & H: E(nm + n? -
[15 [ 1990 [ C ::;:: T R n‘/l:gn)og 2L U = Max capacity
[ 161990 [ Alon O(nm + n¥/¥log n)
[T7 [ 1992 [ King et Ol + 777
1993 | Phillips & Westbrook | O(nm(log,,, /, n + log""* n))
[ 19| 1994 | King et al. O 10 m (1 tog o) ™
20 | 1997 | Goldberg & Rao g(:;/x,,l,o‘ig;"lr’;:.lﬁi:z:) ?;‘g;{gf“'““e'ggﬁa“
11

Greed Revisited:

a Residual Graph & Augmenting Path

L .2 LA 2
o >0 = ol

Residual Graph

12




Greed Revisited:

4 ‘ An Augmenting Path

New Residual Graph

4 Residual Capacity

= The residual capacity (w.r.t. f) of (u,v) is
cq(u,v) = c(u,v) - f(u,v) if f(u,v)Ec(u,v)
and c;(u,v)=f(v,u) if f(v,u)>0

= €.0. C(s,b)=7; ci(a,x) = 1; c(x,a) =3

14

Residual Graph
4 & Augmenting Paths
= The residual graph (w.r.t. f) is the graph
G; = (V.Ey), where
Er={(uV)|c(uyv)>0}
= Two kinds of edges
= Forward edges
= f(u,v)<c(u,v) so cy(u,v)=c(u,v)-f(u,v)>0
= Backward edges
= f(u,v)>0 so c(v,u)® -f(v,u)=f(u,v)>0
= An augmenting path (w.r.t. f) is a simple
S ® tpathin G;.

a | An Augmenting Path

a Augmenting A Flow

augment(f,P)
Cpm Ming i p C(U,v)  “bottleneck(P)”
for each el P
if e is a forward edge then
increase f(e) by cp
else (e is a backward edge)
decrease f(e) by ¢,
endif
endfor
return(f)

18




1 ‘ Augmenting A Flow

If G; has an augmenting path P, then the
function f’=augment(f,P) is a legal flow.

Proof:

= " and f differ only on the edges of P so
only need to consider such edges (u,v)

20

4 Proof of Claim 6.1

= If (u,v) is a forward edge then
f'(u,v)=f(u,v)+cp £ f(u,v)+cq(u,v)
= f(u,v)+c(u,v)-f(u,v)
=c(u,v)
= If (u,v) is a backward edge then f and f’
differ on flow along (v,u) instead of (u,v)
f'(v,u)=f(v,u)-c,® f(v,u)-c,(u,v)
= f(v,u)-f(v,u)=0
= Other conditions like flow conservation
still met

Start with f=0 for every edge

While G; has an augmenting path,
augment

= Questions:
= Does it halt?
= Does it find a maximum flow?
= How fast?

22

Observations about Ford-Fulkerson

* | Algorithm

= At every stage the capacities and flow values
are always integers (if they start that way)
= The flow value n(f")=n(f)+cp>n(f) for
f’=augment(f,P)
= Since edges of residual capacity O do not appear
in the residual graph

= Let C=S i ¢ c(s,u)
= n(f)EC
= F-F does at most C rounds of augmentation since

flows are integers and increase by at least 1 per
step

4 Running Time of Ford-Fulkerson

= For f=0, G;=G

= Finding an augmenting path in G; is
graph search O(n+m)=0(m) time

= Augmenting and updating G; is O(n)
time

= Total O(MC) time

= Does is find a maximum flow?

= Need to show that for every flow f that isn’t
maximum G; contains an s-t-path

24




= A partition (S,T) of V is an s-t-cut if
asi ST T
= Capacity of cut (S,T) is ¢(S,T) = é_ c(u,v)

{s.b,c}
c=15

4 Convenient Definition

= fout(A)=S, awia (VW)

= fin(A):Svi a i a F(ULV)

26

= For any flow f and any cut (S,T),

= the net flow across the cut equals the total
flow, i.e., n(f) = fout(S)-fin(S), and
= the net flow across the cut cannot exceed

the capacity of the cut,
CutCap =3
; E Net Flow = 1

i.e. fou(S)-fin(S) £ ¢(S,T)
= Corollary:
Max flow £ Min cut
CutCap =2
Net Flow = 1
27

3

¥

4 Proof of Claim 6.6

Consider a set Swith s S, tl S
fU(S)-fn(S) =S, 5 i 5 T (VW)-Syi s yi s f (UY)
We can add flow values for edges with both

endpoints in S to both sums and they would cancel
out so

fou(S)-Fn(S)= Si s wiv f (VW)-Syi g i v F(UWV)
= SVT S (SWT \ f (V'W) - SuT Y f (LI ,V))
=Sy i) - ()
:fout(s)_fm(s)

since all other vertices have fout(v)=fin(v)

n(f) = foui(s) and fin(s)=0

28

! | Proof of Claim 6.8

= n(f)=fouy(S)-fin(S)
£ fout(S)
=S, swis (VW)
£S, s wi's C(V,.W)
=c(S,T)

’& Max Flow / Min Cut Theorem

Claim 6.10 For any flow f, if G; has no
augmenting path then there is some s-t-cut
(S,T) such that n(f)=c(S,T) (proof next slide)

= We know by Claims 6.6 & 6.8 that any flow f* satisfies
n(f’) £ ¢(S,T) and we know that F-F runs for finite
time until it finds a flow f satisfying conditions of
Claim 6.10

= Therefore by 6.10 for any flow ', n(f") £n(f)
= Corollary (1) F-F computes a maximum flow in G
(2) For any graph G, the value n(f) of a maximum
flow = minimum capacity ¢(S,T) of any s-t-cut in G

30




4 ‘ Flow Integrality Theorem

If all capacities are integers
= The max flow has an integer value

= Ford-Fulkerson method finds a max flow in
which f(u,v) is an integer for all edges (u,v)

4 Claim 6.10

LetS={u|$anpathin G;fromstou}
T=V-S; sl St T
Forany (u,v) in S~ T, $ an path in G; from s to
u, but not to v.

\' (u,v) has 0 residual capacity:

(u,v) I E P saturated f(u,v) = c(u,v)

(v,u)l EP noflow f(v,u)=0
This is true for every edge crossing the cut, i.e.
f(S)= & f(u,v) =4 c(u,v)=c(S,T) and (S)=0 so

a3 a3 n(f)=fouy(S)-fin(S)=c(S,T)

32

A ‘ Corollaries & Facts

= If Ford-Fulkerson terminates, then it's
found a max flow.

= It will terminate if c(e) integer or rational
(but may not if they're irrational).

= However, may take exponential time,
even with integer capacities:

(@)~c
e \C « 1 t ¢ = 10°, say
PaOar

c

Bipartite matching as a special case

| of flow

Integer flows implies each flow is just a subset of the edges
Therefore flow corresponds to a matching

O(mC)=0(nm) running time

34

1 | Capacity-scaling algorithm

= General idea:
= Choose augmenting paths P with ‘large’
capacity cp
= Can augment flows along a path P by any
amount b£c,
= Ford-Fulkerson still works

= Get a flow that is maximum for the high-
order bits first and then add more bits later

*‘;iciacity Scaling

36




4 ‘ Capacity Scaling

Capacity on each edge is at most 1

38

O(nm) time

Residual capacity across min cut is at most m

40

| Capacity Scaling Bit 2

10/11 N \10/11

C 10/10 :

Residual capacity across min cut is at most m

b O(m) augmentations

Residual capacity across min cut is at most m

42




010/100

101/101 0101011

11/111
) ZL01/1Ky,  100/100 /\k
L0110 S50 00 100 110/
101/101

After O(m) augmentations

el Capacity Scalmg Final

44

4 Total time for capacity scaling

= log, U rounds where U is largest capacity

= At most m augmentations per round

= Let ¢, be the capacities used in the it round and f;
be the maxflow found in the ith round

= For any edge (u,v), ¢;,,(u,v) £ 2¢;(u,v)+1
= i+18tround starts with flow f=2f;
= Let (S,T) be a min cut from the it round

= n(f;)=c;(S,T) so n(f)=2¢,(S,T)
= N(fi,,) £¢;,1(S,T) £ 2¢,(S,T)+m =n(f)+m

= O(m) time per augmentation
= Total time O(mZ2 log U)

46

= Use a shortest augmenting path
(via Breadth First Search in residual graph)

= Time: O(n m?)

a BFS/Shortest Path Lemmas

Distance from s in G; is never reduced by:

Deleting an edge

Proof: no new (hence no shorter) path created
Adding an edge (u,v), provided v is nearer
than u

Proof: BFS is unchanged, since v visited before
(u,v) examined

48

" aback edge




1 ‘ Key Lemma

Let f be a flow, G; the residual graph, and
P a shortest augmenting path. Then no
vertex is closer to s after augmentation
along P.

Proof: Augmentation along P only deletes
forward edges, or adds back edges that
go to previous vertices along P

50

4 ‘ Theorem

The Edmonds-Karp Algorithm performs O(mn) flow
augmentations

Proof:
Call (u,v) critical for augmenting path P if it's closest to
s having min residual capacity
It will disappear from G; after augmenting along P

In order for (u,v) to be critical again the (u,v) edge
must re-appear in G; but that will only happen
when the distance to u has increased by 1

It won’t be critical again until farther from s
so each edge critical at most n times

= Edmonds-Karp runs in O(nm?) time

52

Project Selection

= Given
= a directed acyclic graph G=(V,E)
representing precedence constraints on
tasks (a task points to its predecessors)

= a profit value p(v) associated with each
task vl V (may be positive or negative)
= Find

= a set Al V of tasks that is closed under
predecessors, i.e. if (u,v)l E and ul A then

vl A, that maximizes Profit(A)=S,; » p(v)

g Extended Graph
-------- ®

54




4 Extended Graph G’
. F ........ -

For each vertex v

If p(v)® 0 add (s,v) edge
with capacity p(v)

If p(v)<0 add (v,t) edge
with capacity —p(v)

= Want to arrange capacities on edges of G so that for
minimum s-t-cut (S,T) in G’, the set A=S-{s}
= satisfies precedence constraints
= has maximum possible profitin G

= Cut capacity with S={s} is just C=S,,. oo PV)
= Profit(A) £ C for any set A
= To satisfy precedence constraints don’t want any
original edges of G going forward across the
minimum cut
= That would correspond to a task in A=S-{s} that had a
predecessor not in A=S-{s}
= Set capacity of each of these edges to C+1
= The minimum cut has size at most C

56

= Claim Any s-t-cut (S,T) in G’ such that
A=S-{s} satisfies precedence constraints has
capacity
¢(S,T)=C - S;; Ap(v) = C - Profit(A)

= Corollary A minimum cut (S,T) in G’ yields
an optimal solution A=S-{s} to the profit
selection problem

= Algorithm Compute maximum flow f in G’,
find the set S of nodes reachable from s in G’;
and return S-{s}

58

4 Proof of Claim

= A=S-{s} satisfies precedence constraints

No edge of G crosses forward out of A by our
choice of capacities

Only forward edges cut are of the form (v,t) for
vl Aor(s,v)forvl A
The (v,t) edges for vi A contribute

S\/T A:p(v)<0 -p(v) =- SVT A:p(v)<0 p(v)
The (s,v) edges for vl A contribute

Svl' A:p(v)*0 p(v):C'S\/T A:p(v)*0 p(v)
Therefore the total capacity of the cut is

c(S,T)=C - S, o p(v) =C-Profit(A)

10



