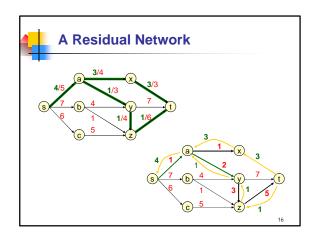
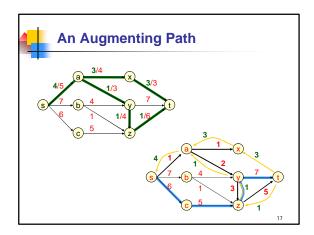


Residual Graph & Augmenting Paths

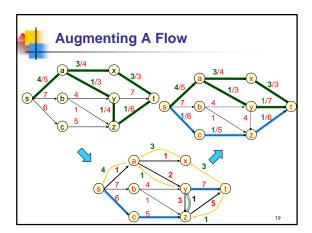
The residual graph (w.r.t. f) is the graph $G_f = (V, E_f)$, where $E_f = \{ (u,v) \mid c_f(u,v) > 0 \}$ Two kinds of edges

Forward edges f(u,v) < c(u,v) so $c_f(u,v) = c(u,v) - f(u,v) > 0$ Backward edges f(u,v) > 0 so $f(u,v) \ge - f(v,u) = f(u,v) > 0$ An augmenting path (w.r.t. f) is a simple f(u,v) = f(u,v) =





```
augment(f,P)
c_{P} \leftarrow \min_{(u,v)\mathbf{\hat{1}}P} c_{f}(u,v) \quad \text{"bottleneck}(P)"
for each e\mathbf{\hat{1}}P
if e is a forward edge then
increase f(e) by c_{P}
else (e is a backward edge)
decrease f(e) by c_{P}
endif
endfor
return(f)
```



Claim 6.1

If **G**_f has an augmenting path **P**, then the function **f**'=augment(**f**,**P**) is a legal flow.

Proof:

 f' and f differ only on the edges of P so only need to consider such edges (u,v)

20

Proof of Claim 6.1

- $\begin{array}{l} \blacksquare \text{ If } (u,v) \text{ is a forward edge then} \\ f'(u,v) = f(u,v) + c_p & f(u,v) + c_f(u,v) \\ &= f(u,v) + c(u,v) f(u,v) \\ &= c(u,v) \end{array}$
- If (u,v) is a backward edge then f and f' differ on flow along (v,u) instead of (u,v) f'(v,u)=f(v,u)-c_p ³ f(v,u)-c_f(u,v) = f(v,u)-f(v,u)=0
- Other conditions like flow conservation still met

1

Ford-Fulkerson Method

Start with f=0 for every edge
While G_f has an augmenting path,
augment

- Questions:
 - Does it halt?
 - Does it find a maximum flow?
 - How fast?

22

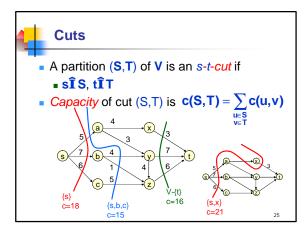
Observations about Ford-Fulkerson Algorithm

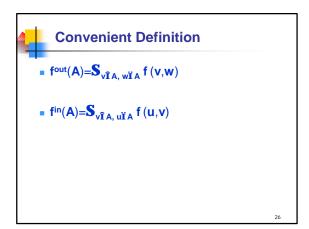
- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value n(f')=n(f)+c_P>n(f) for f'=augment(f,P)
 - Since edges of residual capacity 0 do not appear in the residual graph
- Let C=S_{(s,u)ÎE} c(s,u)
 - n(f)≤C
 - F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step.

Running Time of Ford-Fulkerson

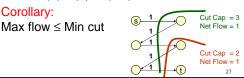
- For f=0, G_f=G
- Finding an augmenting path in G_f is graph search O(n+m)=O(m) time
- Augmenting and updating G_f is O(n) time
- Total O(mC) time
- Does is find a maximum flow?
 - Need to show that for every flow f that isn't maximum G_f contains an s-t-path

24





Claims 6.6 and 6.8
 For any flow f and any cut (S,T),
 the net flow across the cut equals the total flow, i.e., n(f) = fout(S)-fin(S), and
 the net flow across the cut cannot exceed the capacity of the cut, i.e. fout(S)-fin(S) ≤ c(S,T)
 Corollary:



Proof of Claim 6.6

Consider a set S with $s\hat{\mathbf{I}}$ S, $t\check{\mathbf{I}}$ S

fout(S)-fin(S) = $\mathbf{S}_{v\hat{\mathbf{I}}S,w\hat{\mathbf{I}}S}$ f(v,w)- $\mathbf{S}_{v\hat{\mathbf{I}}S,u\hat{\mathbf{I}}S}$ f(u,v)

We can add flow values for edges with both endpoints in S to both sums and they would cancel out so

fout(S)-fin(S) = $\mathbf{S}_{v\hat{\mathbf{I}}S,w\hat{\mathbf{I}}V}$ f(v,w)- $\mathbf{S}_{v\hat{\mathbf{I}}S,u\hat{\mathbf{I}}V}$ f(u,v)

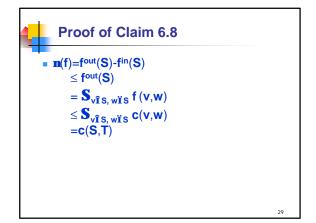
= $\mathbf{S}_{v\hat{\mathbf{I}}S}$ ($\mathbf{S}_{w\hat{\mathbf{I}}V}$ f(v,w) - $\mathbf{S}_{u\hat{\mathbf{I}}V}$ f(u,v))

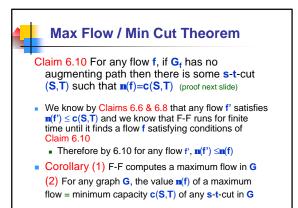
= $\mathbf{S}_{v\hat{\mathbf{I}}S}$ fout (v) - fin(v)

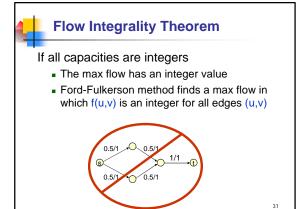
= fout(s)-fin(s)

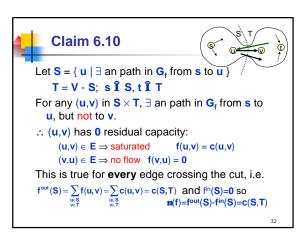
since all other vertices have fout(v)=fin(v)

• \mathbf{n} (f) = \mathbf{f} out(s) and \mathbf{f} in(s)=0



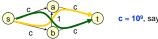


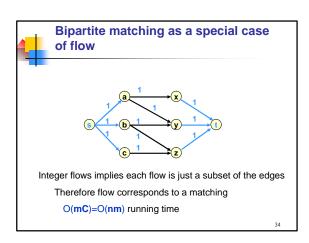




Corollaries & Facts

- If Ford-Fulkerson terminates, then it's found a max flow.
- It will terminate if c(e) integer or rational (but may not if they're irrational).
- However, may take exponential time, even with integer capacities:

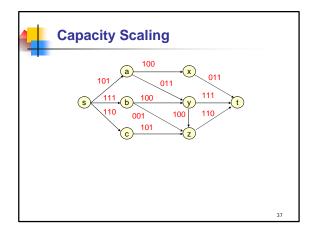


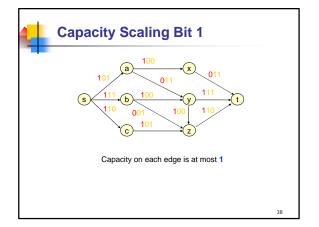


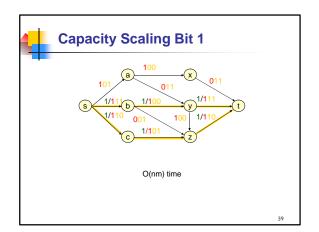
Capacity-scaling algorithm

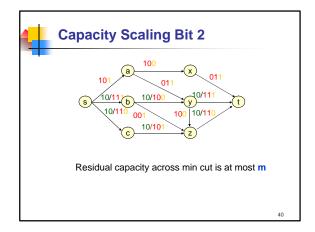
- General idea:
 - Choose augmenting paths P with 'large' capacity c_P
 - Can augment flows along a path P by any amount b£c_P
 - Ford-Fulkerson still works
 - Get a flow that is maximum for the highorder bits first and then add more bits later

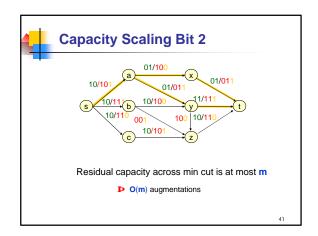
15

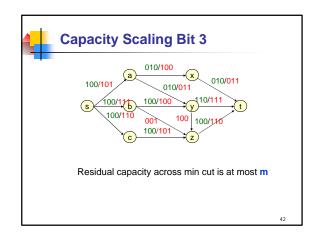


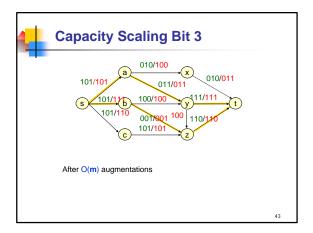


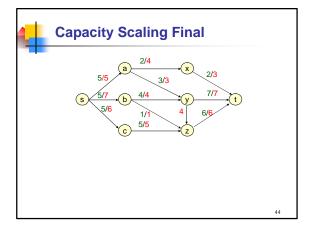


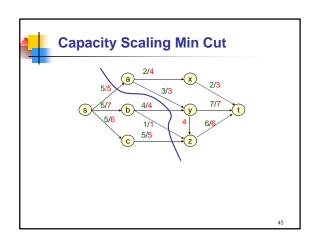


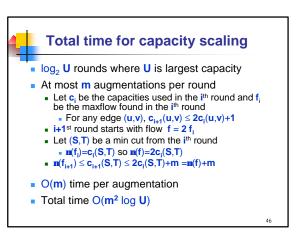


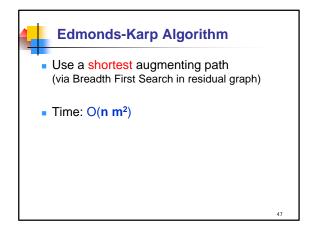


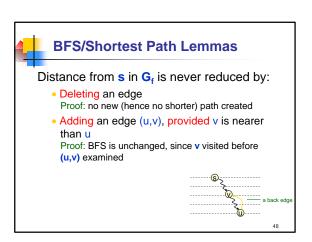










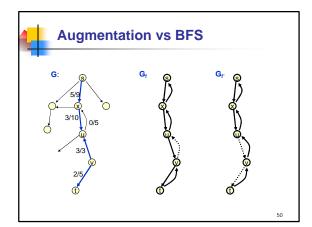


Key Lemma

Let f be a flow, $\mathbf{G_f}$ the residual graph, and \mathbf{P} a shortest augmenting path. Then no vertex is closer to \mathbf{s} after augmentation along \mathbf{P} .

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P

49



Theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof

Call (u,v) critical for augmenting path P if it's closest to s having min residual capacity

It will disappear from G_f after augmenting along P

In order for (u,v) to be critical again the (u,v) edge must re-appear in G_t but that will only happen when the distance to u has increased by 1

It won't be critical again until farther from ${\bf s}$ so each edge critical at most ${\bf n}$ times

51

Corollary

Edmonds-Karp runs in O(nm²) time

52

Project Selection a.k.a. The Strip Mining Problem

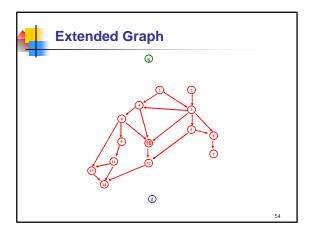
Giver

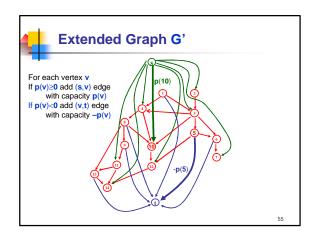
- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its predecessors)
- a profit value p(v) associated with each task vÎ V (may be positive or negative)

Find

a set AÎV of tasks that is closed under predecessors, i.e. if (u,v)∈E and uÎ A then vÎ A, that maximizes Profit(A)=S_{vĨA} p(v)

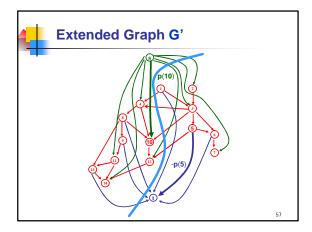
53





Extended Graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set A=S-{s}
 - satisfies precedence constraints
 - has maximum possible profit in G
- Cut capacity with $S=\{s\}$ is just $C=S_{v: p(v)^{3}0} p(v)$
 - Profit(A) ≤ C for any set A
- To satisfy precedence constraints don't want any original edges of ${\bf G}$ going forward across the minimum cut
 - That would correspond to a task in A=S-{s} that had a predecessor not in A=S-{s}
- Set capacity of each of these edges to C+1
 - The minimum cut has size at most C



Project Selection

Claim Any s-t-cut (S,T) in G' such that A=S-{s} satisfies precedence constraints has

c(S,T)=C -
$$\sum_{\mathbf{v}\widehat{\mathbf{1}},\mathbf{A}} \mathbf{p}(\mathbf{v}) = \mathbf{C}$$
 - Profit(A)

- Corollary A minimum cut (S,T) in G' yields an optimal solution $A=S-\{s\}$ to the profit selection problem
- Algorithm Compute maximum flow f in G', find the set S of nodes reachable from s in G'f and return S-{s}

Proof of Claim

- A=S-{s} satisfies precedence constraints
 - No edge of G crosses forward out of A by our choice of capacities
 - Only forward edges cut are of the form (v,t) for vÎ A or (s,v) for vÏ A
 - The (v,t) edges for vÎ A contribute

 $\sum_{\mathbf{v}\hat{\mathbf{I}}\,\mathbf{A}:p(\mathbf{v})<\mathbf{0}} - p(\mathbf{v}) = -\sum_{\mathbf{v}\hat{\mathbf{I}}\,\mathbf{A}:p(\mathbf{v})<\mathbf{0}} p(\mathbf{v})$

■ The (s,v) edges for vi A contribute

 $c(S,T) = C - \sum_{viA} p(v) = C - Profit(A)$