CSE 421: Introduction to

Algorithms

Dynamic Programming

Winter 2003
Paul Beame

4 Dynamic Programming

= Dynamic Programming
= Give a solution of a problem using smaller
sub-problems where all the possible
sub-problems are determined in advance

= Useful when the same sub-problems show
up again and again in the solution

A simple case:
Computing Fibonacci Numbers

=« Recall F,=F, ,+F,, and F=0, F,=1

= Recursive algorithm:
= Fibo(n)
if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

4 Call tree - start

F (6)
T~
F(5) F(4)
/
F@ F(3)
— N\
F@®) F(2)
VAR
F@) FQ@
F(@) F()
|
1 0

F@1) F() 1 0
| |

1 | Full call tree

F (6)
F(5) F(4|)
F@ F@3) F@)
I T
— N\ /A F@ FQ@
F@) F@ F@ F) / \ I F@)
s\ F(1) F() T(l) FI(O) ! 0'
I 1 1

1 0

0

*!Mzation (Caching)

= Remember all values from previous
recursive calls

= Before recursive call, test to see if value
has already been computed

= Dynamic Programming

= Convert memoized algorithm from a
recursive one to an iterative one

Fibonacci

Q ‘ Dynamic Programming Version

= FiboDP(n):
F[0]- O
F[1]- 1
fori=2ton do
F[i]= F[i-1]+Fi-2]
endfor
return(F[n])

Fibonacci: Space-Saving Dynamic

4 Programming

= FiboDP(n):

preva 0

curr- 1

fori=2ton do
temp- curr
curr- curr+prev
prev- temp

endfor

return(curr)

1 Dynamic Programming
= Useful when
= same recursive sub-problems occur
repeatedly
= Can anticipate the parameters of these
recursive calls
= The solution to whole problem can be
figured out with knowing the internal details
of how the sub-problems are solved
= principle of optimality

“Optimal solutions to the sub-problems suffice for
optimal solution to the whole problem”

Three Steps to

4 Dynamic Programming

= Formulate the answer as a recurrence
relation or recursive algorithm

= Show that the number of different values of
parameters in the recursive calls is “small”
= e.g., bounded by a low-degree polynomial
= Can use memoization

= Specify an order of evaluation for the
recurrence so that you already have the
partial results ready when you need them.

10

1 | Weighted Interval Scheduling

= Same problem as interval scheduling
except that each request i also has an
associated value or weight w;
= W; might be
= amount of money we get from renting
out the resource for that time period
= amount of time the resource is being
used w;=f;-s;
= Goal: Find compatible subset S of
requests with maximum total weight

Greedy Algorithms for Weighted

4 Interval Scheduling?

= No criterion seems to work
= Earliest start time s;
= Doesn't work _

= Shortest request time f;-s;
= Doesn't work

= Fewest conflicts
= Doesn't work JR— J—

= Earliest finish fime f;
= Doesn't work

= Largest weight w;
= Doesn’t work

12

Towards Dynamic Programming:

4 ‘ Step 1 — A Recursive Algorithm

= Suppose that like ordinary interval scheduling
we have first sorted the requests by finish
time f; so f, £f, £...£f,

= Say request i comes before request j if i<

For any request j let p(j) be

= the largest-numbered request before j that is
compatible with j

= or 0 if no such request exists
Therefore {1,...,p(j)} is precisely the set of
requests before j that are compatible with |

Towards Dynamic Programming:

4 Step 1 — A Recursive Algorithm

= Two cases depending on whether an
optimal solution O includes request n
= If it does include request n then all other
requests in O must be contained in
{1,...p(n)}
= Not only that!

= Any set of requests in {1,...,p(n)} will be
compatible with request n

= So in this case the optimal solution O must
contain an optimal solution for {1,...,p(n)}

= “Principle of Optimality”

14

Towards Dynamic Programming:

4 ‘ Step 1 — A Recursive Algorithm

= Two cases depending on whether an
optimal solution O includes request n
= If it does not include request n then all
requests in O must be contained in
{1,...,n-1}
= Not only that!

= The optimal solution O must contain an
optimal solution for {1,..., n-1}

= “Principle of Optimality”

Towards Dynamic Programming:
4 Step 1 — A Recursive Algorithm

= All subproblems involve requests {1,..,i}
for some i

= Fori=1,...,n let OPT(i) be the weight of
the optimal solution to the problem

{1,....i}
= The two cases give
OPT(n)=max(w,+OPT(p(n)),OPT(n-1))
= Also
=« nl O iff w,+OPT(p(n))>OPT(n-1)

16

Towards Dynamic Programming:

1 | Step 1 — A Recursive Algorithm

= Sort requests and compute array p[i] for

eachi=1,...,n
ComputeOpt(n)

if n=0 then return(0)

else

u- ComputeOpt(p[n])
v- ComputeOpt(n-1)
if w,+u>v then return(w,+u)
else return(v)
endif

Towards Dynamic Programming:

Q Step 2 — Small # of parameters

= ComputeOpt(n) can take exponential
time in the worst case
= 2" calls if p(i)=i-1 for every i

= There are only n possible parameters to
ComputeOpt

= Store these answers in an array OPT[n]
and only recompute when necessary

= Memoization
= Initialize OPTI[i]=0 for i=1,...,n

18

Dynamic Programming:

Step 2 — Memoization
ComputeOpt(n)

if n=0 then return(0)

else
u- MComputeOpt(p[n])
v- MComputeOpt(n-1)
if w,+u>v then

return(w, +u)

else return(v)

endif

MComputeOpt(n)

if OPT[n]=0 then
v- ComputeOpt(n)
OPT[n]- v
return(v)
else
return(OPT[n])
endif

4

Dynamic Programming Step 3:
Iterative Solution

= The recursive calls for parameter n have parameter
values i that are <n

IterativeComputeOpt(n)
array OPT[0..n]
OPT[0]- O
fori=1ton
if w;+OPT[p[i]] >OPTI[i-1] then
OPTI[i] = w;+OPT][p[i]]
else
OPT[i] = OPTIi-1]
endif
endfor

20

A ‘ Producing the Solution

IterativeComputeOptSolution(n)
array OPTJ[0..n], Used[1..n]
OPT[0]- O
fori=1ton :

if w+OPT[p[i]] >OPTI[i-1] then
OPTI[i] = w+OPT[p[i]]
Used[i]- 1

else
OPT[i] = OPT[i-1]
Used[i] - 0

endif

endfor

..l
i=n
S- £
while i> 0 do
if Used[i]=1 then
S- SE {i}
i= p[i]
else
i-i-1
endif
endwhile

1 2 3 4 5 6 7 8 9
e 2 |6 [8 [11 [15 [u1 12 18
i [7 Jo J10 [13 [14 [17 [18 [19 [20
w3 |7 a4 7 7]2
i [0 [0 o 3 3 3 7

OPTI[i]

Used[i]

1 2 3 4 5 6 7 8 9
4 2 6 8 11 |15 |11 |12 |18
Sfll 7 9 10 |13 |14 |17 |18 |19 |20
w3 (7 |4 |5 [3 |2 |7 |7 |2
pli]
OPTI[i]
Used]i]

22

1 2 3 4 5 6 7 8 9
4 2 6 [[11 [15 (11 [12 [18
i [7 o J10 13 14 [17 [18 [19 [20
w(3 [7 Ja |5 [3]2
i [0 Jo Jo 1 [3 5
optil[3 [7 [7 18 [10 [12 [14 [14 |16

Used]i] [1 1 0 1 1 1 1 0 1

24

1 2 3 4 5 6 7 8 9
L[4]2 |6 |8 J11 15 [11 12 [18
f'l 7 |9 |10 |13 [14 |17 |18 |19 |20
w3 |7 |4 |5 |3 |2 |7 |7 |2
el [0 |0 o |1 [3 |5 [3 [3 |7
ortil (3 17 |7 I8 J10 12 |14 |14 |16
Used[i] |1 1 0 1 1 1 1 0 1
$={9,7,2}

4 Segmented Least Squares

= Least Squares
= Given a set P of n points in the plane
plz(xlryl)r"-rpn:(xn’yn) with X1<"'< ><n
determine a line L given by y=ax+b that
optimizes the totaled ‘squared error’
= Error(L,P)=S(y;-ax;-b)?
= A classic problem in statistics
= Optimal solution is known (see text)
= Call this line(P) and its error error(P)

4 ‘ Least Squares

i | Segmented Least Squares

26

4 Segmented Least Squares

= What if data seems to follow a
piece-wise linear model?

28

4 Segmented Least Squares

30

1‘ ‘ Segmented Least Squares

= What if data seems to follow a piece-wise

linear model?

Number of pieces to choose is not obvious

= If we chose n-1 pieces we could fit with O
error
= Not fair

= Add a penalty of C times the number of
pieces to the error to get a total penalty

= How do we compute a solution with the
smallest possible total penalty?

= Recursive idea
= If we knew the point p; where the last line

segment began then we could solve the
problem optimally for points py,...,p; and
combine that with the last segment to get a
global optimal solution

= Let OPT(i) be the optimal penalty for

points {p;.....p}
= Total penalty for this solution would be
Error({p;,...,pn}) + C + OPT(j-1)

32

4 ‘ Segmented Least Squares

= Recursive idea
= We don't know which point is p;
= But we do know that 1£j£n

= The optimal choice will simply be the
best among these possibilities

= Therefore

OPT(n)=min ¢, {Error({p;.....p,}) + C +
OPT(-1)}

34

1 | Dynamic Programming Solution

SegmentedLeastSquares(n) FindSegments
array OPT[0..n], Begin[1..n] i-n
OPT[0]- 0 Sm E
fori=lton while i> 1 do
OPTI[i]~ Error{(p,,...,.p)}+C compute Line({Pgegingy-+Pi})
Begin(il- 1 output (PgegingPy), Line
forj=2toi-1 . i~ Begin[i]
e- Error{(p;,....p)+C+OPT[-1] endwhile
if e <OPT][i] then
OPT[i] - e
Begin[i]- j
endif

endfor
endfor
return(OPT[n])

ﬁ Knapsack (Subset-Sum) Problem

= Given:

= integer W (knapsack size)

= N object sizes Xy, Xy, ... , X,
= Find:

= Subset S of {1,..., n} such that & £W
but & % is as large as possible '

36

1‘ Recursive Algorithm

= Let K(n,W) denote the problem to solve
for W and x,, X,, ... , X,

= For n>0,

= The optimal solution for K(n,W) is the better
of the optimal solution for either

= K(n-1,W) or x,+K(n-1,W-x,)

= For n=0

= K(0,W) has a trivial solution of an empty
set S with weight 0

1 ‘ Common Sub-problems

= Only sub-problems are K(i,w) for
=i =01,..,n
«=w=01,.W
= Dynamic programming solution
= Table entry for each K(i,w)
= OPT - value of optimal soln for first i
objects and weight w
= belong flag - is x; a part of this solution?
= Initialize OPT[O,w] for w=0,...,W
= Compute all OPT[i,*] from OPTI[i-1,*] for i>0

= Recursive callsonlist ...,3, 4, 7

K(n,W)

KO-3W-T) K(n-3,W-7)

38

for w=0to W; OPT[O,w] - O; end for
fori=1to n do
for w=0to W do
OPT[i,w]~ OPTI[i-1,w] Time O(nW)
belongli,w]- 0
if w3 x;then
val = x;+OPTI[i,w-x;]
if val>OPTI[i,w] then
OPT[i,w]- val
belong[i,w]~ 1
end for
end for
return(OPT[n,W])

40

Sample execution on 2, 3, 4, 7 with
K=15

= To compute the value OPT of the

solution only need to keep the last two
rows of OPT at each step

= What about determining the set S?
= Follow the belong flags O(n) time
= What about space?

42

Three Steps to
4 Dynamic Programming

= Formulate the answer as a recurrence
relation or recursive algorithm

= Show that the number of different values of
parameters in the recursive algorithm is
“small”
= e.g., bounded by a low-degree polynomial

= Specify an order of evaluation for the
recurrence so that you already have the
partial results ready when you need them.

Sequence Alignment:

4 Edit Distance

= Given:
= Two strings of characters A=a, a, ... a, and
B=b, b, ... b,
= Find:

= The minimum number of edit steps needed
to transform A into B where an edit can be:

= insert a single character
= delete a single character
= substitute one character by another

44

4 ‘ Sequence Alignment vs Edit Distance

= Sequence Alignment
= Insert corresponds to aligning with a “—" in the first
string
« Costd (in our case 1)

= Delete corresponds to aligning with a “~” in the
second string

» Cost d (in our case 1)

= Replacement of an a by a b corresponds to a
mismatch

= Costa,, (inourcase lifa'b and 0 if a=b)
= In Computational Biology this alignment
algorithm is attributed to Smith & Waterman

= "diff" utility — where do two files differ

= Version control & patch distribution —
save/send only changes

= Molecular biology

= Similar sequences often have similar origin
and function

= Similarity often recognizable despite
millions or billions of years of evolutionary
divergence

46

a | Growth of GenBank

Segusnces [milioeg|
B Pairs of DM i lang)

18KZ 19R% 19RE 1981 TEed TEET 300D

= Sub-problems: Edit distance problems
for all prefixes of A and B that don’t
include all of both A and B

= Let D(i,j) be the number of edits
required to transform a, a, ... a, into
b, b,...Db

= Clearly D(0,0)=0

48

q ‘ Computing D(n,m)

= Imagine how best sequence handles
the last characters a, and b,
= If best sequence of operations
= deletes a,, then D(n,m)=D(n-1,m)+1
= inserts b, then D(n,m)=D(n,m-1)+1
= replaces a, by b, then
D(n,m)=D(n-1,m-1)+1
= matches a, and b, then
D(n,m)=D(n-1,m-1)

4 Recursive algorithm D(n,m)

if n=0 then
return (m)
elseif m=0 then
return(n)
else
if a,=b,, then
replace-cost = 0 }
else cost of substitution of a, by b, (if used)
replace-cost = 1
endif
return(min{ D(n-1, m) + 1,
D(n, m-1) +1,
D(n-1, m-1) + replace-cost})

50

Dynamic

q ‘ Programming

forj=0tom; D(0,) - j; endfor) -

fori=1ton; D(i,0) -~ i; endfor D(i-1, j-1) D(-1, j)
fori=1ton
forj=1tom
if &=b;then T
replace-cost = 0 == -L---
else D@, j-1) ! D(i. j)
replace-cost - 1 —‘:
endif H
DG,j)~ min{DG-1,j)+1, "7 7
D(i, j-1) + 1,
D(i-1, j-1) + replace-cost}

Ay |-

endfor
endfor

Example run with

4 AGACATTG and GAGTTA

0 1

G1
A2
G 3
T 4
TS5
A6

52

Example run with

4 | AGACATTG and GAGTTA

Rl >
w|s | O
alo | >
aoe | 4
o|~N | 4
")

V1iI1l19V 9
olu|r|w[nv|rk|o

Example run with

q AGACATTG and GAGTTA

AGACATTG
112 (3 |4|5|6 |7 |8
1123456 |7
121

V1il1li9V 9
olu|rlw[v|k|o

54

Example run with

4 ‘ AGACATTG and GAGTTA

NN R
NN wfs | O
wlw| o | >
sa|alo| 4
gla|o|~N| 4
glo|Njo| @

V119V 9
o|lo|r|w[n|R|o

Example run with

4 ‘ AGACATTG and GAGTTA

AGACATTG G
13444546471
1t2t3fals5t6+
F2 [1f243f4f5+1
1f22t3fatsd
2|2F3[3[3ta+
3[3[3t4as[34
NEERIEETIE

1
t

N
1

V119V 9

O PUTH A WP PO
[GF SNE AR N TN N T
M |O|lo|O| N

= Follow the sequence and use each
color of arrow to tell you what operation
was performed.

= From the operations can derive an
optimal alignment

AGACATTG
_GAG_TTA

Example run with

4 AGACATTG and GAGTTA

V119V 9

o|lu|s|lw|Nv|R|o

glr|w|[Nn|[r|R- | >
ENY AR U S LN)
wWlw[N|N[R|Nw | >
MMwlw|nv[v|w(s | O
w|s|lw|lw|lw|so| >
Mw|lw|(s|s|lojo | 4
rw|d|la|lo|lo|N| 4
sn|lo|lo|o|Njeo | ®

56

Example run with

| AGACATTG and GAGTTA

AGACATT
Lalol3lalslelzsd
1f1l213l4ls516d
2 [1 F2fstatst
12 2+3talsd
2|2F3[3][3ta+t
353 3tals[st
A

3143144

V119V 9
O PUTT AP PR PHTO
salo|lo|o|Nje | ®

58

To compute the distance values we only need the
last two rows (or columns)

= O(min(m,n)) space

To compute the alignment/sequence of operations

= seem to need to store all O(mn) pointers/arrow colors

Nifty divide and conquer variant that allows one to do
this in O(min(m,n)) space and retain O(mn) time

= In practice the algorithm is usually run on smaller chunks of

a large string, e.g. m and n are lengths of genes so a few
thousand characters

= Researchers want all alignments that are close to optimal

= Basic algorithm is run since the whole table of pointers
(2 bits each) will fit in RAM

= Ideas are neat, though

60

10

1 ‘ Saving space

= Alignment corresponds to a path through the table
from lower right to upper left
= Must pass through the middle column

= Recursively compute the entries for the middle
column from the left
If we knew the cost of completing each then we could figure
out where the path crossed
Problem
= There are n possible strings to start from.
Solution
= Recursively calculate the right half costs for each entry in this
column using alignments starting at the other ends of the two input
strings!
Can reuse the storage on the left when solving the right
hand problem

Shortest paths with negative cost

4 edges (Bellman-Ford)

= Dijsktra’s algorithm failed with negative-cost
edges
= What can we do in this case?
= Negative-cost cycles could result in shortest paths
with length -¥
= Suppose no negative-cost cycles in G
= Shortest path from s to t has at most n-1 edges

= If not, there would be a repeated vertex which
would create a cycle that could be removed
since cycle can't have —ve cost

62

Shortest paths with negative cost

4‘ edges (Bellman-Ford)

= We want to grow paths from s to t based
on the # of edges in the path
= Let Cost(s,t,i)=cost of minimum-length
path from s to t using up to i hops.
. Cost(v,t,O)z{O if v=t
¥ otherwise

= Cost(v,t,i)=min{Cost(v,t,i-1),
ming, i g(Cyy+Cost(w,t,i-1))}

= Observe that the recursion for
Cost(s,t,i) doesn’t change t
= Only store an entry for each v and i
= Termed OPT(v,i) in the text
= Also observe that to compute OPT(*,i)
we only need OPT(*,i-1)

= Can store a current and previous copy in
O(n) space.

64

i | Bellman-Ford

ShortestPath(G,s,t)
forall vi vV
OPT[v]- ¥
OPTI[t]- O
for i=1to n-1 do .
for all vi V do O(mn) time
OPT [V~ Min ¢ (G *OPTIW])
forall vl V do
OPT[v]~ min(OPT'[v],OPT[v])
return OPT[s]

= Claim: There is a negative-cost cycle
that can reach t iff for some vertex vi V,
Cost(v,t,n)<Cost(v,t,n-1)

= Proof:

= We already know that if there aren't any
then we only need paths of length up to n-
1

= For the other direction
= The recurrence computes Cost(v,t,i)

correctly for any number of hops i

11

] Last details

= Can run algorithm and stop early if the OPT
and OPT’ arrays are ever equal
= Even better, one can update only neighbors v of
vertices w with OPT’[w]* OPT[w]
= Can store a successor pointer when we
compute OPT
= Homework assignment

= By running for step n we can find some vertex
v on a negative cycle and use the successor
pointers to find the cycle

68

70

72

12

4 Bellman-Ford

Edges only go from lower to higher-numbered vertices
« Update distances in reverse order of topological sort
« Only one pass through vertices required

¢ O(n+m) time

74

13

