

Algorithm Design Techniques

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

2

Fast exponentiation

- Power(a,n)
 - Input: integer n and number a
 - Output: aⁿ
- Obvious algorithm
 - n-1 multiplications
- Observation:
 - if n is even, n=2m, then an=am•am

Divide & Conquer Algorithm

Power(a,n)

if n=0 then return(1) else if n=1 then return(a) else

 $x \leftarrow Power(a, \lfloor n/2 \rfloor)$ if n is even then
return(x•x)
else
return(a•x•x)

Analysis

- Worst-case recurrence
 - T(n)=T(\[n/2\])+2 for n=1
 - T(1)=0
- Time
 - $\begin{array}{c} \blacksquare \ T(n) = T(\lfloor n/2 \rfloor) + 2 \leq T(\lfloor n/4 \rfloor) + 2 + 2 \leq \ldots \\ \leq T(1) + \underbrace{2 + \ldots + 2}_{log_2 n \ copies} = 2 \ log_2 n \end{array}$
- More precise analysis:
 - T(n)= \[\log_2 n \] + # of 1's in n's binary representation

A Practical Application- RSA

- Instead of an want an mod N
 - $\quad \blacksquare \quad a^{i+j} \bmod \mathbf{N} = ((a^i \bmod \mathbf{N}) {\boldsymbol{\cdot}} (a^j \bmod \mathbf{N})) \bmod \mathbf{N}$
 - same algorithm applies with each x•y replaced by
 ((x mod N)•(y mod N)) mod N
- In RSA cryptosystem (widely used for security)
 - need aⁿ mod N where a, n, N each typically have 1024 bits
 - Power: at most 2048 multiplies of 1024 bit numbers
 - relatively easy for modern machines
 - Naive algorithm: 2¹⁰²⁴ multiplies

Time Analysis

- At each step we halved the size of the interval
- It started at size b-a
- It ended at size e
- # of calls to f is log₂((b-a)/e)

Euclidean Closest Pair

- Given a set P of n points p₁,...,p_n with realvalued coordinates
- Find the pair of points $\mathbf{p_i}$, $\mathbf{p_i}$ P such that the Euclidean distance $\mathbf{d}(\mathbf{p_i}$, $\mathbf{p_j})$ is minimized
- Q(n²) possible pairs
- In one dimension there is an easy O(n log n) algorithm
 - Sort the points
 - Compare consecutive elements in the sorted list
- What about points in the plane?

10

Closest Pair In the Plane: Divide and Conquer

- Sort the points by their x coordinates
- Split the points into two sets of n/2 points L and R by x coordinate
- Recursively compute
 - closest pair of points in L, (p_L,q_L)
 - closest pair of points in R, (p_R,q_R)
- Let $d=min\{d(p_L,q_L),d(p_R,q_R)\}$ and let (p,q) be the pair of points that has distance d
- This may not be enough!
 - Closest pair of points may involve one point from L and the other from R!

4

Sometimes two sub-problems aren't enough

- More general divide and conquer
 - You've broken the problem into a different sub-problems
 - Each has size at most n/b
 - The cost of the break-up and recombining the sub-problem solutions is O(nk)
- Recurrence
 - $T(n) \le a \times T(n/b) + c \times n^k$

15

Master Divide and Conquer Recurrence

- If $T(n) \le a \times T(n/b) + c \times n^k$ for n > b then
 - if $a > b^k$ then T(n) is $Q(n^{\log_b a})$
 - if $a < b^k$ then T(n) is $Q(n^k)$
 - if a=bk then T(n) is Q(nk log n)
- Works even if it is [n/b] instead of n/b.

 $C_{11} \leftarrow P_1 + P_3$; $C_{12} \leftarrow P_2 + P_3 + P_6 - P_7$ $C_{21} \leftarrow P_1 + P_4 + P_5 + P_7$; $C_{22} \leftarrow P_2 + P_4$

Another Divide & Conquer Example: Multiplying Faster

- If you analyze our usual grade school algorithm for multiplying numbers
 - Q(n²) time
 - On real machines each "digit" is, e.g., 32 bits long but still get Q(n2) running time with this algorithm when run on n-bit multiplication
- We can do better!
 - We'll describe the basic ideas by multiplying polynomials rather than integers
 - Advantage is we don't get confused by worrying about carries at first

Notes on Polynomials

- These are just formal sequences of coefficients
 - when we show something multiplied by xk it just means shifted k places to the left - basically no work

Usual polynomial multiplication

```
4x^2 + 2x + 2
               x^2 - 3x + 1
               4x^2 + 2x + 2
     -12x<sup>3</sup> - 6x<sup>2</sup> - 6x
4x^4 + 2x^3 + 2x^2
4x^4 - 10x^3 + 0x^2 - 4x + 2
```


Polynomial Multiplication

- Given:
 - Degree n-1 polynomials P and Q

$$P = a_0 + a_1 x + a_2 x^2 + ... + a_{n-2}x^{n-2} + a_{n-1}x^{n-1}$$

$$Q = b_0 + b_1 x + b_2 x^2 + ... + b_{n-2}x^{n-2} + b_{n-1}x^{n-1}$$

- Compute:
 - Degree 2n-2 Polynomial PQ
 - $PQ = a_0b_0 + (a_0b_1 + a_1b_0) x + (a_0b_2 + a_1b_1 + a_2b_0) x^2$ +...+ $(a_{n-2}b_{n-1}+a_{n-1}b_{n-2}) x^{2n-3} + a_{n-1}b_{n-1} x^{2n-2}$
- Obvious Algorithm:
 - Compute all a_ib_i and collect terms
 - Q (n²) time

32

Naive Divide and Conquer

- Assume n=2k
 - $P = (a_0 + a_1 \quad X + a_2 X^2 + ... + a_{k-2} X^{k-2} + a_{k-1} X^{k-1}) +$ $(a_k + a_{k+1} x + \dots + a_{n-2} x^{k-2} + a_{n-1} x^{k-1}) x^k$ $= P_0 + P_1 x^k$ where P_0 and P_1 are degree k-1 polynomials
 - Similarly $\mathbf{Q} = \mathbf{Q_0} + \mathbf{Q_1} \mathbf{x^k}$
- $PQ = (P_0 + P_1 x^k)(Q_0 + Q_1 x^k)$ $= P_0Q_0 + (P_1Q_0 + P_0Q_1)x^k + P_1Q_1x^{2k}$
- 4 sub-problems of size k=n/2 plus linear combining
 - $T(n)=4\times T(n/2)+cn$ Solution $T(n)=Q(n^2)$

Karatsuba's Algorithm

- A better way to compute the terms
 - Compute
 - $A \leftarrow P_0Q_0$
 - B \leftarrow P₁Q₁
 - $\mathbf{C} \leftarrow (\mathbf{P_0} + \mathbf{P_1})(\mathbf{Q_0} + \mathbf{Q_1}) = \mathbf{P_0}\mathbf{Q_0} + \mathbf{P_1}\mathbf{Q_0} + \mathbf{P_0}\mathbf{Q_1} + \mathbf{P_1}\mathbf{Q_1}$
 - Then
 - $P_0Q_1+P_1Q_0=C-A-B$
 - So PQ=A+(C-A-B)xk+Bx2k
 - 3 sub-problems of size n/2 plus O(n) work
 - T(n) = 3 T(n/2) + cn
 - $T(n) = O(n^a)$ where $a = log_2 3 = 1.59...$

Multiplication

- Polynomials
- Naïve: Q(n²)
- Karatsuba:
- Q(n1.59...) ■ Best known: Q(n log n)
- "Fast Fourier Transform"
- FFT widely used for signal processing
- Integers
 - Similar, but some ugly details re: carries, etc. gives $Q(n \log n \log \log n)$,
 - mostly unused in practice except for symbolic manipulation systems like Maple

Hints towards FFT: Evaluation at Special Points

- Evaluation of polynomial at 1 point takes O(n)
 - So 2n points (naively) takes O(n²)—no savings
- Key trick:
 - use carefully chosen points where there's some sharing of work for several points, namely various powers of $w = e^{2pi/n}$, $i = \sqrt{-1}$
- Plus more Divide & Conquer.
- Result:
 - both evaluation and interpolation in O(n log n) time

43

Fun facts about w=e^{2pi/n} for even n

- $\mathbf{w}^{n} = \mathbf{1}$
- w^{n/2} = -1
- w^{n/2+k} = w^k for all values of k
- $w^2 = e^{2pi/m}$ where m=n/2
- W^k = cos(2kp/n)+i sin(2kp/n) so can compute with powers of W

44

The key idea for n even

- $$\begin{split} \bullet & \quad \mathbf{P}(\mathbf{w}) = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{w} + \mathbf{a}_2 \mathbf{w}^2 + \mathbf{a}_3 \mathbf{w}^3 + \mathbf{a}_4 \mathbf{w}^4 + \dots + \mathbf{a}_{n-1} \mathbf{w}^{n-1} \\ & \quad = \mathbf{a}_0 + \mathbf{a}_2 \mathbf{w}^2 + \mathbf{a}_4 \mathbf{w}^4 + \dots + \mathbf{a}_{n-2} \mathbf{w}^{n-2} \\ & \quad \quad + \mathbf{a}_1 \mathbf{w} + \mathbf{a}_3 \mathbf{w}^3 + \mathbf{a}_5 \mathbf{w}^5 + \dots + \mathbf{a}_{n-1} \mathbf{w}^{n-1} \\ & \quad = \mathbf{P}_{\text{even}}(\mathbf{w}^2) + \mathbf{w} \; \mathbf{P}_{\text{odd}}(\mathbf{w}^2) \end{split}$$
- $$\begin{split} \bullet & \quad P(-w) = a_0 a_1 w + a_2 w^2 a_3 w^3 + a_4 w^4 ... a_{n-1} w^{n-1} \\ & = a_0 + a_2 w^2 + a_4 w^4 + ... + a_{n-2} w^{n-2} \\ & \quad (a_1 w + a_3 w^3 + a_5 w^5 + ... + a_{n-1} w^{n-1}) \\ & = P_{even}(w^2) w P_{odd}(w^2) \end{split}$$

where $\mathbf{P}_{\text{even}}(\mathbf{x}) = \mathbf{a}_0 + \mathbf{a}_2 \mathbf{x} + \mathbf{a}_4 \mathbf{x}^2 + ... + \mathbf{a}_{n-2} \mathbf{x}^{n/2-1}$

and $P_{odd}(x) = a_1 + a_3 x + a_5 x^2 + ... + a_{n-1} x^{n/2-1}$

The recursive idea for n a power of 2

A1--

- P_{even} and P_{odd} have degree n/2 where
- $P(w^k) = P_{even}(w^{2k}) + w^k P_{odd}(w^{2k})$
- $P(-w^k) = P_{even}(w^{2k}) w^k P_{odd}(w^{2k})$

Recursive Algorithm

- Evaluate P_{even} at 1,w²,w⁴,...,wⁿ⁻² so problems are of same type but smaller size
- Evaluate P_{odd} at 1,w²,w⁴,...,wⁿ⁻² ←
- Combine to compute P at 1,w,w²,...,w^{n/2-1}
- Combine to compute P at -1,-w,-w²,...,-w²/2-1 (i.e. at w²/2, w²/2+1, w²/2+2,..., w²/-1)

 w^2 is $e^{2pi/m}$ where m=n/2

Analysis and more

- Run-time
 - $T(n)=2\times T(n/2)+cn$ so $T(n)=O(n \log n)$
- So much for evaluation ... what about interpolation?
 - Given
 - $r_0 = R(1), r_1 = R(w), r_2 = R(w^2), ..., r_{n-1} = R(w^{n-1})$
 - Compute
 - $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1} \text{ s.t. } \mathbf{R}(\mathbf{x}) = \mathbf{c}_0 + \mathbf{c}_1 \mathbf{x} + \dots + \mathbf{c}_{n-1} \mathbf{x}^{n-1}$

47

Interpolation » Evaluation: strange but true

- Weird fact:
 - $$\begin{split} & \quad \text{If we define a new polynomial} \\ & \quad S(x) = r_0 + r_1 x + r_2 x^2 + ... + r_{n-1} x^{n-1} \text{ where } r_0, r_1, \ldots, r_{n-1} \\ & \quad \text{are the evaluations of } R \quad \text{at } 1, w, \ldots, w^{n-1} \end{split}$$
 - Then $c_k=S(w^{-k})/n$ for k=0,...,n-1
- So...
 - evaluate **S** at $1,w^{-1},w^{-2},...,w^{-(n-1)}$ then divide each answer by **n** to get the $\mathbf{c_0},...,\mathbf{c_{n-1}}$
 - w⁻¹ behaves just like w did so the same O(n log n) evaluation algorithm applies!

Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing sub-problems of roughly equal size is usually critical
- Examples:
 - Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, ...

49

Why this is called the discrete Fourier transform

Real Fourier series

• Given a real valued function f defined on $[0,2\pi]$ the Fourier series for f is given by $f(x)=a_0+a_1\cos(x)+a_2\cos(2x)+...+a_m\cos(mx)+...$ where $\frac{1}{1}\int_{0}^{2\pi} f(x)\cos(mx) dx$

 $a_{m} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \cos(mx) dx$

- is the component of f of frequency m
- In signal processing and data compression one ignores all but the components with large a_m and there aren't many since

50

Why this is called the discrete Fourier transform

- Complex Fourier series
 - Given a function f defined on $[0,2\pi]$ the complex Fourier series for f is given by $f(z)=b_0+b_1 e^{iz}+b_2 e^{2iz}+...+b_m e^{miz}+...$ where $b_m=\frac{1}{2\pi}\int\limits_{-\pi}^{2\pi}f(z)\,e^{-miz}\,dz$

is the component of f of frequency m

• If we discretize this integral using values at n 2p/n apart equally spaced points between 0 and 2π we get

$$\overline{b}_m = \frac{1}{n} \sum_{k=0}^{n-1} f_k \ e^{\cdot 2kmi\pi/n} = \frac{1}{n} \sum_{k=0}^{n-1} f_k \ \omega^{-km} \ \text{where} \ f_k = f(2k\pi/n)$$

just like interpolation!