CSE 421: Introduction to
Algorithms

Divide and Conquer

Winter 2003
Paul Beame

4 Algorithm Design Techniques

= Divide & Conquer

= Reduce problem to one or more sub-problems of
the same type

= Typically, each sub-problem is at most a
constant fraction of the size of the original
problem

= e.g. Mergesort, Binary Search, Strassen’s
Algorithm, Quicksort (kind of)

= Power(a,n)
= Input: integer n and number a
= Output: a"

= Obvious algorithm
= N-1 multiplications

= Observation:
= if n is even, n=2m, then a"=a™m-am

4 Divide & Conquer Algorithm

= Power(a,n)
if n=0 then return(1)
else if n=1 then return(a)
else
x = Power(a,é&n/20)
if n is even then
return(x-x)
else
return(a. x-x)

= Worst-case recurrence
= T(n)=T(&n/20)+2 for n=1
[] T(l):0
= Time
= T(N)=T(&n/20)+2 £ T(en/40)+2+2 £ ...
£ T(1)+2+...+2 = 2 log,n
log,n copies
= More precise analysis:
= T(n)= dog,nu + # of 1's in n’s binary
representation

1 A Practical Application- RSA

= Instead of a" want a” mod N
= a*imod N = ((@ mod N).(al mod N)) mod N
= same algorithm applies with each x-y replaced by
= ((x mod N)-(y mod N)) mod N

= In RSA cryptosystem (widely used for security)

= need a” mod N where a, n, N each typically have
1024 bits

= Power: at most 2048 multiplies of 1024 bit
numbers

= relatively easy for modern machines
= Naive algorithm: 21924 multiplies

Binary search for roots

4 ‘ (bisection method)

Y Y /1

A] /

= Given:
= continuous function f and two points a<b with
f(a) £0 and f(b) >0
= Find:
= approximation to c s.t. f(c)=0 and a<c<b

4 Bisection method

Bisection(a,b, €)
if (a-b) <e then
return(a)
else
c - (ath)/2
if f(c) £0 then
return(Bisection(c,b,e))
else
return(Bisection(a,c,€))

a ‘ Time Analysis

= At each step we halved the size of the
interval

= |t started at size b-a
= |t ended at size e

= # of calls to f is log,((b-a)/e)

4 Euclidean Closest Pair

= Given a set P of n points p,,...,p,, with real-
valued coordinates

= Find the pair of points pi,pjT P such that the
Euclidean distance d(p;,p;) is minimized

= Q(n2) possible pairs

= In one dimension there is an easy O(n log n)
algorithm
= Sort the points
= Compare consecutive elements in the sorted list

= What about points in the plane?

10

i | Closest Pair in the Plane
O L.

No single direction along which one
can sort points to guarantee success!

11

Closest Pair In the Plane:

Qﬁwnd Conquer

= Sort the points by their x coordinates

= Split the points into two sets of n/2 points L
and R by x coordinate

= Recursively compute
= closest pair of points in L, (p_,q,)
= closest pair of points in R, (pg,dR)

= Let d=min{d(p.,q,).d(pr.qg)} @nd let (p,q) be
the pair of points that has distance d

= This may not be enough!

= Closest pair of points may involve one point from
L and the other from R!

12

R

4 ‘ A clever geometric idea

L

Any pair of points pi L and
ql R with d(p,q)<d must
lie in band

No two points can be in
a2 { the same green box

Only need to check pairs
of points up to 2 rows
above and below -

At most 15 other points!

4 Closest Pair Recombining

Sort points by y coordinate ahead of time

On recombination only compare each point in
LER to the 12 points above it in the y sorted
order

If any of those distances is better than d
replace (p,q) by the best of those pairs

O(n log n) for x and y sorting at start

Two recursive calls on problems on half size
O(n) recombination

Total O(n log n)

14

Sometimes two sub-problems aren’t

4 ‘ enough

= More general divide and conquer

= You've broken the problem into a different
sub-problems

= Each has size at most n/b

= The cost of the break-up and recombining
the sub-problem solutions is O(n¥)

= Recurrence
= T(N)E a(n/b)+conk

1 | Proving Master recurrence

Problem size T(n)=aT(n/b)+cnk #probs

n a S 1
n/b R a
n/b2 y} o e © o 22
b ‘e

1 e ad

Master Divide and Conquer

| Recurrence

= If T(n)E ax(n/b)+cnk for n>b then
= if a>bk then T(n)is Q(n"°%*?)

= if a<bk then T(n)is Q(n¥)
= if a=bk then T(n) is Q(n* log n)
= Works even if it is én/buinstead of n/b.

16

) Proving Master recurrence

Problem size 1 (1y=aa7(n/b)+cnk # probs

: | a - 1

nb < . o: ° o . a

n/b2 1 e o e o o 22
© RN St

b ° e o o

1 e o o e o o ad

18

Problem Size r(n)=axr(n/b)+cnk #probs cost

n .0, chk
| e NG !
n/b ;D ’ crank/bk
k=)
caznk/bhzk
=conk(a/bk)g
onk(a/bk)d
=coad

4 Geometric Series

= S =t+tr +tr2+ L+t
S = tr +tr2+ ..+t + "
s (r-1)S =tr" - t

= SO S=t (r"-1)/(r-1) if rt1.

= Simple rule

« Ifr* 1then Sis a constant times largest
term in series

20

19

= Geometric series
= ratio a/bk
= d+1=logyn +1 terms
= firstterm cnk, lastterm cad
= Ifa/bk=1
= all terms are equal T(n) is Q(n* log n)
= If a/bk<1
= first term is largest T(n) is Q(nk)
= Ifa/bk>l logyn log,a
=« last term is largest T(n) is Q(@%)=Q(a ")=Q(n ")
(To see this take log,, of both sides)

1 | Multiplying Matrices

fori=1ton
forj=1ton
Cli,j]= 0
fork=1ton
Cli,jI=Cli,jl+Ali k]B[k,j]
endfor
endfor
endfor

4 Multiplying Matrices

gau a; A aug &, b, by bug

{3321 A Ay a'24l;|. glzl bzz b23 bzAl;

Gy A A Al &y by by byl

e u u

Eya A 35 Al g’u by, by byug
éab+ab, rab, tab, ab,+ab,tab,tab, o ab.tab,+rab,+ab,u
:%uq_l*'apbn*'az)%*'aabn b, tad, tah, tab, © aﬂtl4+322t12A+52;54+324bM3
Sl rabytady tahy abrad, radytab, o ab,rab,radrab,d
@, taghy, vady +abh, af,tab,tab,tab, o ab.tady,tad,tab.g

= n3 multiplications, n3-n? additions

22

1 Multiplying Matrices

S el sl
B 8| & % by by
&y a, ay ayl &y by, by byl

u
@y A 8 Al &u b b bud

% ad, +ab, ab,+ab, o ab,+tab,+ab,+ahb,
: by +a ey +aby, |, tabstad, tab, o ab,tad,tadb,tab,
g”mth"'asztb*'amk)u*'ambn a, +aghy, tadh, tab, o Ay, tagdy, tady, tagh,
@b ragh, rady +ab, ab,tab,rab,tab, o ab.tak,rad,rab,

24

4 ‘ Multiplying Matrices

1 a,zg'bu b, by b,u
L 8 (B Buf B by by b
S A 2 Al By By by byl
By 8y A 8u(@u by |bg bud

éa +ady, ah,+ab, o ah,+ady, taby,tab, |
:%21th+azpu By + 8,00y | B, + D, Hahy tau, | © azHA"'aﬂA"'amk&*'azAbMt
?Slth +aghy, tady tah, ad,tagdh, tad,tad, o ab,tad,tady, +aaab44t
by tagdy tady tab, ab,rab,tab,tab, o ab,tad, tad, tab,g

SE

@, a|a, a0 d, b,|b, b
&P, a?l%ﬂ,%% E?%H
Y VNS i
@h2a, | af\oa,l B 2b, |bS 28,0

é%%’f%%‘zﬁiﬁ\ﬁ%% zaj”;}lzz"am@ﬁaubal ° $+§§4+&4&+%%0
e + + (
:§ZIQJ+aQZbZl+ T 3—%;%2 +ady, tah,| © Y A+5231%5%42bu3

ieSlql-'.aS;]Zl*. + 41 aS + 2+a.13t§2+aaab42 °© 631q4+63;]24+a3;].‘4+334b44@
%&+%+$¢§&%§?2%+m+wulo g B A Bap,

26

[An AlZ][B | Blz]
l Ax | A, Jl Bas | BzzJ

.
AllBll+A12821 | AllB 12+A12BZZ

.A21511+A22|321| A, B, +A LB,
= T(n)=8T(n/2)+4(n/2)?>=8T(n/2)+n?
= 82250 T(n) is

Qi***) = Qi***) = Q)

Strassen’s Divide and Conquer

4 Algorithm

= Strassen’s algorithm

= Multiply 2x2 matrices using 7 instead of 8
multiplications (and lots more than 4 additions)

= T(n)=7 T(n/2)+cn?
. 7522 so T(n)is Q(n'°%") which is O(n2#1-)

= Fastest algorithms theoretically use O(n2376) time

= not practical but Strassen’s is practical
provided calculations are exact and we stop
recursion when matrix has size about 100
(maybe 10)

28

P1m App(B1itBy); Py Ay (Bio+By))
Pam (Ai- A)Br Py (A An)Byp
Psm (A~ A)(Byi - Byy)

P (A1~ A21)(B1p- Byy)

P (Agr- Ap)(B1y+By)

Cim Py#Py; Cipm Py#tPy+Pg- Py
Cym Py#P,+Pg+P; 0 Copm PotP,

Another Divide &Conquer Example:

"Q Multiplying Faster

= If you analyze our usual grade school
algorithm for multiplying numbers
= Q(n?) time
= On real machines each “digit” is, e.g., 32 bits long
but still get Q(n?) running time with this algorithm
when run on n-bit multiplication
= We can do better!

= We'll describe the basic ideas by multiplying
polynomials rather than integers

= Advantage is we don't get confused by worrying
about carries at first

30

= These are just formal sequences of
coefficients

= when we show something multiplied by x it just
means shifted k places to the left — basically no

work
. AX2+2X + 2
Usual polynomial X2- 3x+1
multiplication 4X2 + 2X + 2
-12x3 - 6x2 - 6x

4x4 + 2x3 +2x2
4x4-10x3 +0x? - 4x + 2

4 Polynomial Multiplication

= Given:
= Degree n-1 polynomials P and Q
«P=ay+ta; x+a,x2+ ... +a,,x"2+a, ,x"
= Q=by+b,x+b,x2+ ... +b ,x"2+b_ ,x"t
= Compute:
= Degree 2n-2 Polynomial P Q
= PQ=aghg + (agh;+ashg) X + (agh,+a;b; +a,bg) x?
+ot (A pbgtan b, o) X33 +a, b, x202
= Obvious Algorithm:

= Compute all ajb; and collect terms
= Q(n?) time

32

= Assume n=2k
s P=(ag+ta; x+a,x2+ .. +a,xk2+a, xk)+
(a +a x + s+ 3 XK 4 a xK) xK
=P, + P, xk where Py and P, are degree k-1
polynomials
= Similarly Q = Q, + Q, xk
= PQ = (Py*+P;x*)(Qo+Q;x¥)
=PQo + (P1Qo+PQ)Xk + P,Q,x%
= 4 sub-problems of size k=n/2 plus linear combining
« T(n)=43(n/2)+cn Solution T(n) = Q(n?)

4 Karatsuba’'s Algorithm

= A better way to compute the terms
= Compute
= A PQo
=B~ PQ
= C = (PetP1)(Qu*Qy) = PoQo+P1Qu+PQ; +P; Q;
= Then
« PyQ,+P,Q, = C-A-B
= So PQ=A+(C-A-B)xk+Bx2
= 3 sub-problems of size n/2 plus O(n) work
= T(n) =3T(n/2) +cn
= T(n) = O(n2) where a = log,3 = 1.59...

34

Karatsuba: —
Details — s —]
_________ [B |
|
PolyMul(P, Q): 2n-1 n A 0

/I'P, Q are length n =2k vectors, with P[i], Q[i] being
/I the coefficient of X' in polynomials P, Q respectively.
/I Let Pzero be elements 0..k-1 of P; Pone be elements k..n-1
/I Qzero, Qone : similar
If n=1 then Return(P[0]*Q[0]) else
A - PolyMul(Pzero, Qzero); //resultis a (2k-1)-vector
B = PolyMul(Pone, Qone); /I ditto
Psum - Pzero + Pone; /I add corresponding elements
Qsum = Qzero + Qone; /I ditto
C - polyMul(Psum, Qsum); /I another (2k-1)-vector
Mid - C-A-B; /I subtract correspond elements
R - A + Shift(Mid, n/2) +Shift(B,n) // a (2n-1)-vector
Return(R);

= Polynomials
= Naive: Q(n?)
= Karatsuba: Q(n%59-)
= Best known: Q(n log n)
= "Fast Fourier Transform*
= FFT widely used for signal processing
= Integers
= Similar, but some ugly details re: carries, etc.
gives Q(n log n loglog n),
= mostly unused in practice except for symbolic
manipulation systems like Maple

36

Hints towards FFT:

4 ‘ Interpolation

Given set of values at 5 points

Hints towards FFT:

4 Interpolation

Given set of values at 5 points
Can find unique degree 4 polynomial
going through these points

38

= Given values of degree n-1 polynomial R at n
distinct points y4,...,y,
= R(y)...R(yn)

= Compute coefficients c,,...,c,_; such that
s R(X)=CytC X+C, X2+...+C XL

= System of linear equations in c,...,C,;
Co +C1Y1+CoY 1%+ +C Y1 " =R(Y1)

5 Nl known
Co +C1YoCoY o+ +C 1Y, =R(Y,)

unknown
CO +C1yn+C2yn2+' . '+Cn—1ynn-1:R(yn)

Interpolation:
4 n equations in n unknowns

= Matrix form of the linear system
1y yi® - ¥ [co R(y1)
1y, v o v ey R(y2)
c, |I=| .

1 yrl yn2 e ynn-l Cn—l R(yn)

= Fact: Determinant of the matrix is P i (YY)
which is not 0 since points are distinct
= System has a unique solution c,...,.c,;

40

Hints towards FFT:

4 | Evaluation & Interpolation

ordinary polynomial

P:ag,ay,....an

multiplication Q(n?) I
Q: by,by,....b, 4 C - é a‘bj R'CO’Cl""’CZn-l
evaluation i interpolation
at Yo Yon1 fromé’(u’r)-)--xyzn 1
point-wise
P(yO)’Q(yO) multiplication R(yO)_‘ P(yo)Q(yo)
P(y.).Q(y.) of numbers O(n) R(y)~ P(y)Q(y.)
P20 Q)
S R(Y2n.1)" P(Y2n.1)R(Y2n1)

41

Karatsuba’'s algorithm and evaluation

4 and interpolation

= Strassen gave a way of doing 2x2 matrix multiplies
with fewer multiplications
= Karatsuba’s algorithm can be thought of as a way of
multiplying degree 1 polynomials (which have 2
coefficients) using fewer multiplications
= PQ=(P+P,2)(Qo*Q12)
=PoQo *+ (P1Qu*PoQy)z + P1Q,2*
= Evaluate at 0,1,-1 (Could also use other points)
= A=P(0)Q(0)= PQ,
= C=P(1)Q(1)=(Po+P)(Qe+Qy)
= D=P(-1)Q(-1)=(Po -P1)(Qo-Qy)
= Interpolating, Karatsuba’s Mid=(C-D)/2 and B=(C+D)/2-A

42

Hints towards FFT:

1 ‘ Evaluation at Special Points

= Evaluation of polynomial at 1 point takes O(n)
= S0 2n points (naively) takes O(n2—no savings

= Key trick:
= use carefully chosen points where there’s some

sharing of work for several points, namely various
— a2pim
powers of = g2Pi n’ i = /_1

= Plus more Divide & Conquer.

= Result:

= both evaluation and interpolation in O(n log n)
time

4 Fun facts about w=e2/" for even n

sW'=1

- Wn/2 =-1

= W2+ = - WK for all values of k

= W2 = e2Pi/m \here m=n/2

= WK= cos(2kp/n)+i sin(2kp/n) so can compute
with powers of W

44

= P(w) = ag+a,wrawi+agwi+a,wht.. +a, Wt
= ag +a,W? +a,wt +...+ a, w2
+ a,wHagwd +agwd +...+a, Wt
= Peven(wz) +w Podd(WZ)
= P(-w)=a,-a,w+a,w? -awi+a,w-... -a, w"t
= a, +ta,W? +a,wt +...+ a, w2
- (aywHagw? +agws +...+a, W)
= Peyen(W?) - W Pogq(W?)
where P, (X) = 8, +a,X +a,x? +...+ a, ,x"*1

and P,y(X) = a;+agx +ax2 +...+a, x"21

The recursive idea for

4 n a power of 2

= Also
= P, and Py, have degree n/2 where
" P(Wk):Peven WZk)+WkP0dd WZk)
" P('Wk):Peven(WZk)'WkPDdd(WZk)

W2 is e2°i/m where m=n/2

= Recursive Algorithm
2 -2 | 'so problems are of same
= Evaluate Peven at LW WAL W type but smaller size

= Evaluate P, at 1,w2,w*,...,wn2
= Combine to compute P at 1,w,w?,...,wn/2-1

= Combine to compute P at -1,-w,-w2,...,-wn/2-1
(i_e_ a'[W"/Z, wh/2+1 , Wn/2+2”__Y Wn»l)

46

= Run-time
= T(N)=2X(n/2)+cn so T(n)=O(n log n)
= So much for evaluation ... what about
interpolation?
= Given
= 1,=R(1), r;=R(W), r,=RW?),..., r, ;=R(w?1)
= Compute
= Cg, Cq,..,Cpg St R(X)=Co+C X +...4+C 1 x"L

Interpolation » Evaluation:

strange but true

= Weird fact:
= If we define a new polynomial
S(X) = rg+ X + X2 +..+ 1, X"t where ro, ry, ..., I,
are the evaluations of R at 1, w, ..., w1
= Then c,=S(w*)/n for k=0,...,n-1

= SO...

= evaluate S at 1,wt,w?2,...,w01 then divide each
answer by n to get the c,,...,c, ;

= W behaves just like w did so the same O(n log n)
evaluation algorithm applies !

48

4 Divide and Conquer Summary

= Powerful technigue, when applicable

= Divide large problem into a few smaller
problems of the same type

= Choosing sub-problems of roughly equal size
is usually critical

= Examples:
= Merge sort, quicksort (sort of), polynomial
multiplication, FFT, Strassen's matrix multiplication
algorithm, powering, binary search, root finding by
bisection, ...

Why this is called the discrete Fourier

4 transform

= Real Fourier series

= Given areal valued function f defined on [0,2p]
the Fourier series for f is given by
f(x)=a,+a, cos(x) + a, cos(2x) +...+ a,, cos(mx) +...
where

1%
—— (J(x) cos(mx) dx
a5 G0 cos(mY)

= is the component of f of frequency m

= In signal processing and data compression one
ignores all but the components with large a,, and

there aren’t many since
50

Why this is called the discrete Fourier

4 ‘ transform

= Complex Fourier series

= Given a function f defined on [0,2p]
the complex Fourier series for f is given by
f(z)=bg+b, €2+ b, edz +. .+ b emz+. .

where 12
= — of(z) e™* dz
by, 2 0of()

is the component of f of frequency m

= If we discretize this integral using values at n | 2p/n apart

equally spaced points between 0 and 2p we get

_ 1% 1 1% 1
bn==g f e = =3 f, w*" where f,=f(2kp/n)
N <o N =0

just like interpolation! 51

