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CSE 421: Introduction to 
Algorithms

Dealing with NP-completeness
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Paul Beame
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What to do if the  problem you want 
to solve is NP-hard

n You might have phrased your problem too 
generally
n e.g., in practice, the graphs that actually arise are 

far from arbitrary
n maybe they have some special characteristic 

that allows you to solve the problem in your 
special case
n for example the Independent-Set problem is easy on 

“interval graphs”
n Exactly the case for interval scheduling!

n search the literature to see if special cases 
already solved
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What to do if the  problem you want 
to solve is NP-hard

n Try to find an approximation algorithm
n Maybe you can’t get the size of the best Vertex 

Cover but you can find one within a factor of 2 of 
the best
n Given graph G=(V,E), start with an empty cover
n While there are still edges in E left

n Choose an edge e={u,v} in E and add both u and v
to the cover

n Remove all edges from E that touch either u or v.

n Edges chosen don’t share any vertices so 
optimal cover size must be at least # of edges 
chosen
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What to do if the  problem you want 
to solve is NP-hard

n Polynomial-time approximation algorithms for 
NP-hard problems can sometimes be ruled 
out unless P=NP
n E.g. Coloring Problem: Given a graph G=(V,E)

find the smallest k such that G has a k-coloring.
n No approximation ratio better than 4/3 is 

possible unless P=NP
n Otherwise you would have to be able to 

figure out if a 3-colorable graph can be 
colored in < 4 colors. i.e. if it can be             
3-colored
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Travelling Sales Problem

n TSP
n Given a weighted graph G find of a 

smallest weight tour that visits all vertices 
in G

n NP-hard
n See text

n Notoriously easy to obtain close to 
optimal solutions
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Minimum Spanning Tree 
Approximation
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Minimum Spanning Tree 
Approximation: Factor of 2

MST(G) ≤ TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Any tour contains a spanning tree 
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Why did this work?

n We found an Euler tour on a graph that 
used the edges of the original graph 
(possibly repeated).

n The weight of the tour was the total 
weight of the new graph.

n Suppose now
n All edges possible
n Weights satisfy triangle inequality

n c(u,w) ≤ c(u,v)+c(v,w)
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Minimum Spanning Tree 
Approximation: Triangle Inequality

Can shortcut edges 
• Go to next new vertex

on the Euler tour
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Minimum Spanning Tree 
Approximation: Factor of 2

TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Shortcut edges
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Christofides Algorithm:                      
A factor 3/2 approximation

n Any Eulerian subgraph of the weighted complete 
graph will do
n Eulerian graphs require that all vertices have even degree so

n Christofides Algorithm
n Compute an MST T
n Find the set O of odd-degree vertices in T
n Add a minimum-weight perfect matching M on the vertices in 

O to T to make every vertex have even degree
n There are an even number of odd-degree vertices!

n Use an Euler Tour E in T∪M and then shortcut as before

n Claim: TOUROPT≤ 1.5 Cost(E)
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Christofides Approximation
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Christofides Approximation

Claim: 2 Cost(M) ≤ TOUROPT

Any tour costs at least the cost of two matchings on O
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Knapsack Problem

n For any ε >0 can get an algorithm that 
gets a solution within (1+ε) factor of 
optimal with running time O(n2(1/ε)2)
n “Polynomial-Time Approximation Scheme”

or PTAS 
n Based on maintaining just the high order 

bits in the dynamic programming solution. 
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What to do if the  problem you want 
to solve is NP-hard

n More on approximation algorithms
n Recent research has classified problems based on what 

kinds of approximations are possible if P≠NP

n Best: (1+ε) factor for any ε>0.
n packing and some scheduling problems, TSP in plane

n Some fixed constant factor > 1, e.g. 2, 3/2, 100
n Vertex Cover, TSP in space, other scheduling problems 

n Θ(log n) factor
n Set Cover, Graph Partitioning problems

n Worst: Ω(n1-ε) factor for any ε>0
n Clique, Independent-Set, Coloring
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What to do if the  problem you want 
to solve is NP-hard

n Try an algorithm that is provably fast “on 
average”.
n To even try this one needs a model of what a 

typical instance is.
n Typically, people consider “random graphs”

n e.g. all graphs with a given # of edges are 
equally likely

n Problems:
n real data doesn’t look like the random graphs
n distributions of real data aren’t analyzable
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What to do if the  problem you want 
to solve is NP-hard

n Try to search the space of possible hints in a more 
efficient way and hope it is quick enough
n e.g. back-tracking search

n For Satisfiability there are 2n possible truth assignments
n If we set the truth values one-by-one we might be able to 

figure out whole parts of the space to avoid, 
n e.g.  After setting x1←1, x2←0 we don’t even need to 

set x3 or x4 to know that it won’t satisfy
(¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (x4 ∨ ¬x3) ∧ (x1 ∨ ¬x4)

n For Satisfiability this seems to run in times like 
2n/20 on typical hard instances.

n Related technique: branch-and-bound
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What to do if the  problem you want 
to solve is NP-hard

n Use heuristic algorithms and hope they 
give good answers
n No guarantees of quality
n Many different types of heuristic algorithms

n Many different options, especially for 
optimization problems, such as TSP, 
where we want the best solution.
n We’ll mention several on following slides



4

19

Heuristic algorithms for
NP-hard problems

n local search for optimization problems
n need a notion of two solutions being 

neighbors
n Start at an arbitrary solution S
n While there is a neighbor T of S that is 

better than S
n S←T

n Usually fast but often gets stuck in a local 
optimum and misses the global optimum
n With some notions of neighbor can take a long 

time in the worst case
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e.g., Neighboring solutions for TSP

Solution S Solution T

Two solutions are neighbors 
iff there is a pair of edges you can
swap to transform one to the other
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Heuristic algorithms for
NP-hard problems

n randomized local search
n start local search several times from random starting points and

take the best answer found from each point
n more expensive than plain local search but usually 

much better answers

n simulated annealing
n like local search but at each step sometimes move to a worse 

neighbor with some probability
n probability of going to a worse neighbor is set to decrease 

with time as, presumably, solution is closer to optimal
n helps avoid getting stuck in a local optimum but often slow 

to converge (much more expensive than randomized local 
search)

n analogy with slow cooling to get to lowest energy state in a 
crystal (or in forging a metal)
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Heuristic algorithms for
NP-hard problems

n genetic algorithms
n view each solution as a string (analogy with DNA)
n maintain a population of good solutions
n allow random mutations of single characters of individual 

solutions
n combine two solutions by taking part of one and part of 

another (analogy with crossover in sexual reproduction)
n get rid of solutions that have the worst values and make 

multiple copies of solutions that have the best values 
(analogy with natural selection -- survival of the fittest).

n little evidence that they work well and they are usually 
very slow
n as much religion as science
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Heuristic algorithms

n artificial neural networks
n based on very elementary model of human neurons
n Set up a circuit of artificial neurons

n each artificial neuron is an analog circuit gate whose 
computation depends on a set of connection strengths

n Train the circuit
n Adjust the connection strengths of the neurons by giving 

many positive & negative training examples and seeing if 
it behaves correctly

n The network is now ready to use

n useful for ill-defined classification problems such as optical 
character recognition but not typical cut & dried problems

24

Other fun directions

n DNA computing
n Each possible hint for an NP problem is represented as 

a string of DNA
n fill a test tube with all possible hints

n View verification algorithm as a series of tests
n e.g. checking each clause is satisfied in case of 

Satisfiability
n For each test in turn

n use lab operations to filter out all DNA strings that 
fail the test (works in parallel on all strings; uses PCR)

n If any string remains the answer is a YES.
n Relies on fact that Avogadro’s # 6 x 1023 is large to get enough 

strings to fit in a test-tube. 
n Error-prone & so far only problem sizes less than 15!
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Other fun directions

n Quantum computing
n Use physical processes at the quantum level to implement 

weird kinds of circuit gates
n unitary transformations

n Quantum objects can be in a superposition of many pure 
states at once
n can have n objects together in a superposition of 2n states

n Each quantum circuit gate operates on the whole 
superposition of states at once
n inherent parallelism

n Need totally new kinds of algorithms to work well. Theoretically
able to factor efficiently but huge practical problems: errors, 
decoherence.  


