
1

CSE 421, W ‘01, Ruzzo 1

CSE 421
Introduction to Algorithms

Winter 2000

NP-Completeness
(Chapter 11)

CSE 421, W ‘01, Ruzzo 2

Easy Problems vs. Hard Problems

Easy - problems whose worst case running
time is bounded by some polynomial in the
size of the input.

Easy = Efficient

Hard - problems that cannot be solved
efficiently.

CSE 421, W ‘01, Ruzzo 3

The class P

Definition: P = set of problems solvable by
computers in polynomial time.

i.e. T(n) = O(nk) for some k.
• These problems are sometimes called

tractable problems.

Examples: sorting, SCC, matching, max flow,
shortest path, MST – all of 421 except
Stamps/Knapsack/Partition

CSE 421, W ‘01, Ruzzo 4

Is P a good definition of efficient?

Is O(n100) efficient? Is O(109n) efficient?

Are O(2n), O(2n/1000), O(nlogn), …really so bad?

So we have:
P = “easy” = efficient = tractable
= solvable in polynomial-time

not P = hard = not tractable

USUALLY

2

CSE 421, W ‘01, Ruzzo 5

Decision Problems

• Technically, we restrict discussion to
decision problems - problems that have an
answer of either yes or no.

• Usually easy to convert to decision problem:
– Example: Instead of looking for the size of the

shortest path from s to t in a graph G, we ask:
“Is there a path from s to t of length ≤ k?”

CSE 421, W ‘01, Ruzzo 6

Examples of Decision Problems in P

Big Flow
Given: graph G with edge lengths, vertices s and t,

integer k.
Question: Is there an s-t flow of length ≥ k?

Small Spanning Tree
Given: weighted undirected graph G, integer k.
Question: Is there a spanning tree of weight ≤ k?

CSE 421, W ‘01, Ruzzo 7

Decision Problems

Loss of generality?
A. Not much. If we know how to solve the decision

problem, then we can usually solve the original
problem.

B. More importantly, decision problem is easier (at
least, not harder), so a lower bound on decision
problem is a lower bound on general problem.

CSE 421, W ‘01, Ruzzo 8

Decision problem as a Language-
recognition problem

• Let U be the set of all possible inputs to the
decision problem.

• L ⊆ U = the set of all inputs for which the
answer to the problem is yes.

• We call L the language corresponding to the
problem. (problem = language)

• The decision problem is thus:
– to recognize whether or not a given input belongs

to L = the language recognition problem.

3

CSE 421, W ‘01, Ruzzo 9

The class NP

Definition: NP = set of problems solvable by a
nondeterministic algorithm in polynomial time.

Another way of saying this:
NP = The class of problems whose solution can

be verified in polynomial time.
NP = “nondeterministic polynomial”

Examples: all of problems in P plus: SAT, TSP,
Hamiltonian cycle, bin packing, vertex cover.

CSE 421, W ‘01, Ruzzo 10

Complexity Classes

P

NPNP = Polynomial-time
verifiable

P = Polynomial-time
solvable

CSE 421, W ‘01, Ruzzo 11

Verifying Solutions

Given a problem and a potential solution,
verify that the solution is correct in
polynomial-time.

In general, guess a solution, and then check if
the guess is correct in polynomial time.

CSE 421, W ‘01, Ruzzo 12

Examples of Problems in NP

Vertex Cover
A vertex cover of G is a set of vertices such that

every edge in G is incident to at least one of these
vertices. Example:

Question: Given a graph G, integer k, determine
whether G has a vertex cover containing ≤ k
vertices?

Verify: Given a set of ≤ k vertices, does it cover
every edge? (Guess and check in polynomial
time.)

4

CSE 421, W ‘01, Ruzzo 13

Examples of Problems in NP

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF)

is satisfiable if there exists a truth assignment of
0’s and 1’s to its variables such that the value of
the expression is 1. Example:

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)
Question: Given a Boolean formula in CNF, is it

satisfiable?
Verify: Given a truth assignment, does it satisfy the

formula? (Guess and check in polynomial time.)

CSE 421, W ‘01, Ruzzo 14

Problems in P can also be verified in
polynomial-time

Shortest Path: Given a graph G with edge lengths,
is there a path from s to t of length ≤ k?

Verify: Given a path from s to t, is its length ≤ k?

Small Spanning Tree: Given a weighted undirected
graph G, is there a spanning tree of weight ≤ k?

Verify: Given a spanning tree, is its weight ≤ k?

CSE 421, W ‘01, Ruzzo 15

Nondeterminism

• A nondeterministic algorithm has all the
“regular” operations of any other algorithm
available to it.

• In addition, it has a powerful primitive, the
nd-choice primitive.

• The nd-choice primitive is associated with a
fixed number of choices, such that each
choice causes the algorithm to follow a
different computation path.

CSE 421, W ‘01, Ruzzo 16

Nondeterminism (cont.)

• A nondeterministic algorithm consists of an
interleaving of regular deterministic steps and
uses of the nd-choice primitive.

• Definition: the algorithm accepts a language L
if and only if
– It has at least one “good” (accepting) sequence of

choices for every x ∈ L, and
– For all x ∉ L, it reaches a reject outcome on all

paths.

5

CSE 421, W ‘01, Ruzzo 17

P vs NP vs Exponential Time

• Theorem: Every problem in
NP can be solved
deterministically in
exponential time

• Proof: the nondeterministic
algorithm makes only nk nd-
choices. Try all 2nk

possibilities; if any succeed,
accept; if all fail, reject.

nk

2nk

accept

CSE 421, W ‘01, Ruzzo 18

The class NP-complete

We are pretty sure that no problem in NP – P
can be solved in polynomial time.

Non-Definition: NP-complete = the hardest
problems in the class NP. (Formal definition
later.)

Interesting fact: If any one NP-complete
problem could be solved in polynomial time,
then all NP-complete problems could be
solved in polynomial time.

CSE 421, W ‘01, Ruzzo 19

Complexity Classes

NP = Poly-time verifiable

P = Poly-time solvable

NP-Complete = “Hardest”
problems in NP

NP

P

NP-Complete

CSE 421, W ‘01, Ruzzo 20

The class NP-complete (cont.)

Thousands of important problems have been
shown to be NP-complete.

Fact (Dogma): The general belief is that there
is no efficient algorithm for any NP-complete
problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover,
Hamiltonian cycle, TSP, bin packing.

6

CSE 421, W ‘01, Ruzzo 21

NP

P

NP-Complete

sorting
SCC
max flow
MST

SAT
clique
vertex cover
traveling salesman

Complexity Classes of Problems

CSE 421, W ‘01, Ruzzo 22

Does P = NP?

• This is an open question.
• To show that P = NP, we have to show that

every problem that belongs to NP can be
solved by a polynomial time deterministic
algorithm.

• No one has shown this yet.

• (It seems unlikely to be true.)

CSE 421, W ‘01, Ruzzo 23

Earlier in this class we learned techniques for
solving problems in P.

Question: Do we just throw up our hands if we
come across a problem we suspect not to be
in P?

CSE 421, W ‘01, Ruzzo 24

Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:
1) Prove your problem is NP-complete

(a common, but not guaranteed outcome)

2) Come up with an algorithm to solve the
problem usually or approximately.

7

CSE 421, W ‘01, Ruzzo 25

Reductions: a useful tool

Definition: To reduce A to B means to figure out
how to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2) th

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

CSE 421, W ‘01, Ruzzo 26

More Examples of reductions

Example:
reduce BIPARTITE_MATCHING to MAX_FLOW

s t

All capacities = 1

Is there a flow of size k?
u v

Is there a matching of size k?

f

CSE 421, W ‘01, Ruzzo 27

Polynomial-Time Reductions

Definition: Let L1 and L2 be two languages
from the input spaces U1 and U2.

We say that L1 is polynomially reducible to L2
if there exists a polynomial-time algorithm f
that converts each input u1 ∈ U1 to another
input u2 ∈ U2 such that u1 ∈ L1 iff u2 ∈ L2.

u1 ∈ L1 ⇔ f(u1) ∈ L2

CSE 421, W ‘01, Ruzzo 28

Polynomial-time Reduction from language L1 to
language L2 via reduction function f.

L1

U1 U2

L2
f

u1 ∈ L1 ⇔ f(u1) ∈ L2

8

CSE 421, W ‘01, Ruzzo 29

Polynomial-Time Reductions (cont.)

Define: A ≤p B “A is polynomial-time reducible to
B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f”

(1) A ≤p B and B ∈ P ⇒ A ∈ P

(2) A ≤p B and A ∉ P ⇒ B ∉ P

(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)
CSE 421, W ‘01, Ruzzo 30

Using an Algorithm for B to Decide A

Algorithm
to compute f

x Algorithm
to decide B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to decide A

“If A ≤p B, and we can solve B in polynomial time,
then we can solve A in polynomial time also.”

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).
How long does the above algorithm for A take?

CSE 421, W ‘01, Ruzzo 31

Definition of NP-Completeness

Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and
(2) B is NP-hard.

CSE 421, W ‘01, Ruzzo 32

Proving a problem is NP-complete

• Technically,for condition (2) we have to show
that every problem in NP is reducible to B.
(yikes!) This sounds like a lot of work.

• For the very first NP-complete problem
(SAT) this had to be proved directly.

• However, once we have one NP-complete
problem, then we don’t have to do this every
time.

• Why? Transitivity.

9

CSE 421, W ‘01, Ruzzo 33

Re-stated Definition

Lemma 11.3: Problem B is NP-complete if:
(1) B belongs to NP, and
(2’) A is polynomial-time reducible to B, for

some problem A that is NP-complete.

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other
NP-complete problem is polynomial-time
reducible to B.

CSE 421, W ‘01, Ruzzo 34

Usefulness of Transitivity

Now we only have to show L’ ≤p L , for some
problem L’∈ NP-complete , in order to show
that L is NP-hard. Why is this equivalent?

1) Since L’∈ NP-complete , we know that L’ is
NP-hard. That is:

∀ L’’ ∈ NP, we have L’’ ≤p L’
2) If we show L’ ≤p L, then by transitivity we know

that: ∀ L’’ ∈ NP, we have L’’ ≤p L.
Thus L is NP-hard.

CSE 421, W ‘01, Ruzzo 35

The growth of the number of NP-
complete problems

• Steve Cook (1971) showed that SAT was
NP-complete.

• Richard Karp (1972) found 24 more
NP-complete problems.

• Today there are thousands of known
NP-complete problems.
– Garey and Johnson (1979) is an excellent source

of NP-complete problems.

CSE 421, W ‘01, Ruzzo 36

SAT is NP-complete

Cook’s theorem : SAT is NP-complete

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF)

is satisfiable if there exists a truth assignment of
0’s and 1’s to its variables such that the value of
the expression is 1. Example:

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)
Example above is satisfiable. (We an see this by

setting x=1, y=1 and z=0.)

10

CSE 421, W ‘01, Ruzzo 37

SAT is NP-complete

Rough idea of proof:

(1) SAT is in NP because we can guess a truth
assignment and check that it satisfies the
expression in polynomial time.

(2) SAT is NP-hard because …..

Cook proved it directly, but easier to see via an
intermediate problem – Circuit-SAT

CSE 421, W ‘01, Ruzzo 38

CSE 421, W ‘01, Ruzzo 39 CSE 421, W ‘01, Ruzzo 40

Circuit-SAT ≤p 3-SAT

11

CSE 421, W ‘01, Ruzzo 41

How do you prove problem A is
NP-complete?

1) Prove A is in NP: show that given a solution, it can
be verified in polynomial time.

2) Prove that A is NP-hard:
a) Select a known NP-complete problem B.
b) Describe a polynomial time computable algorithm
that computes a function f, mapping every instance
of B to an instance of A. (that is: B ≤p A)
c) Prove that every yes-instance of B maps to a
yes-instance of A, and every no-instance of B maps
to a no-instance of A.
d) Prove that the algorithm computing f runs in

polynomial time. CSE 421, W ‘01, Ruzzo 42

your
function

f

1) Prove A is in NP: “ Given a possible solution to A, I can
verify its correctness in polynomial-time.”

2) Prove that A is NP-hard:
a) “I will reduce known NP-complete problem B to A.”
b) “Let b be an arbitrary instance of problem B. Here is
how you convert b to an instance a of problem A.”
Note: this method must work for ANY instance of B.
c) “If a is a “yes”-instance, then this implies that b is also
a “yes”-instance. Conversely, if b is a “yes”-instance,
then this implies that a is also a “yes”-instance.”
d) “The conversion from B to A runs in polynomial

time because….”

Proof that problem A is NP-complete

CSE 421, W ‘01, Ruzzo 43

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of

size ≤ k such that every edge in E is incident
to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

NP-complete problem: Vertex Cover

CSE 421, W ‘01, Ruzzo 44

NP-complete problem: Clique

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of

size ≥ k such that all vertices in C are
connected to all other vertices in C.

Example: Clique of size ≥ 4

12

CSE 421, W ‘01, Ruzzo 45

NP-complete problem:
Satisfiability (SAT)

Input: A Boolean formula in CNF form.
Output: True iff there is a truth assignment of

0’s and 1’s to the variables such that the
value of the expression is 1.

Example: Formula S is satisfiable with the
truth assignment x=1, y=1 and z=0.

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)

CSE 421, W ‘01, Ruzzo 46

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of

colors to the vertices in G such that no two
adjacent vertices have the same color. (using
only 3 colors)

Example:

CSE 421, W ‘01, Ruzzo 47

NP-complete problem: Knapsack

Input: set of objects with weights and values, a
maximum weight that can be carried and a desired
value. (see p. 357 in Manber)

Output: True iff there is a subset of the objects with
(total weight ≤ allowable weight) and
(total value ≥ desired value).

Example: Items: {a, b, c},size(a)=3,size(b)=6,size(c)=4
value(a)=$30, value(b)=$24, value(c)=$18
Max weight = 10, Desired value = $50.

Answer: yes, {a,b} CSE 421, W ‘01, Ruzzo 48

NP-complete problem: Partition

Input: Set of items S, each with an associated
size. The sum of the items’ sizes is 2k.

Output: True iff there is a subset of the items
whose sizes add up to k.

Example: S = (2,3,1,10,4,6). Is there a subset
of items that sums to 13? (yes)

13

CSE 421, W ‘01, Ruzzo 49

NP-complete problem: TSP

Input: An undirected graph G=(V,E) with
integer edge weights, and an integer b.

Output: True iff there is a simple cycle in G
passing through all vertices (once), with total
cost ��E�

Example:
b = 34

5

3

4 6

4
7

2

5

8
CSE 421, W ‘01, Ruzzo 50

CSE 421, W ‘01, Ruzzo 51 CSE 421, W ‘01, Ruzzo 52

14

CSE 421, W ‘01, Ruzzo 53

A 3-Coloring Gadget

"Sort of an OR gate":

(1) if any input is T,

the output can be T

(2) if output is T,

some input must be T

CSE 421, W ‘01, Ruzzo 54

Coping with NP-Completeness

• Is your real problem a special subcase?
– E.g. 3-SAT is NP-complete, but 2-SAT is not;
– Ditto 3- vs 2-coloring
– E.g. maybe you only need planar graphs, or degree 3

graphs, or …

• Guaranteed approximation good enough?
– E.g. Euclidean TSP within 1.5 * Opt in poly time

• Clever exhaustive search, e.g. Branch & Bound

• Heuristics – usually a good approximation and/or
usually fast

CSE 421, W ‘01, Ruzzo 55

2x Approximation to EuclideanTSP

• A TSP tour visits all vertices, so contains a
spanning tree, so TSP cost is > cost of min
spanning tree.

• Find MST

• Double all edges
• Find Euler Tour
• Shortcut
• Cost of shortcut < ET = 2 * MST < 2 * TSP

5

3

4

2

5

CSE 421, W ‘01, Ruzzo 56

1.5x Approximation to EuclideanTSP

• Find MST
• Find min cost matching

among odd-degree
tree vertices

• Cost of matching ≤ TSP/2
• Find Euler Tour
• Shortcut

• Shortcut ≤ ET ≤ MST + TSP/2 < 1.5* TSP

5

3

4

2

5

