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NP-Completeness
(Chapter 11)
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Easy Problems vs. Hard Problems

Easy - problems whose worst case running 
time is bounded by some polynomial in the 
size of the input.

Easy = Efficient

Hard - problems that cannot be solved 
efficiently.
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The class P

Definition: P = set of problems solvable by 
computers in polynomial time.  

i.e. T(n) = O(nk) for some k.
• These problems are sometimes called 

tractable problems.

Examples: sorting, SCC, matching, max flow, 
shortest path, MST – all of 421 except 
Stamps/Knapsack/Partition
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Is P a good definition of efficient?

Is O(n100) efficient? Is O(109n) efficient?

Are O(2n), O(2n/1000), O(nlogn), …really so bad?

So we have:
P = “easy” = efficient = tractable 
= solvable in polynomial-time

not P = hard = not tractable

USUALLY
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Decision Problems

• Technically, we restrict discussion to 
decision problems - problems that have an 
answer of either yes or no.

• Usually easy to convert to decision problem:
– Example: Instead of looking for the size of the 

shortest path from s to t in a graph G, we ask: 
“Is there a path from s to t of length ≤ k?”

CSE 421, W ‘01, Ruzzo 6

Examples of Decision Problems in P

Big Flow
Given: graph G with edge lengths, vertices s and t, 

integer k.
Question: Is there an s-t flow of length ≥ k?

Small Spanning Tree
Given: weighted undirected graph G, integer k.
Question: Is there a spanning tree of weight ≤ k?
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Decision Problems

Loss of generality?
A.  Not much. If we know how to solve the decision 

problem, then we can usually solve the original 
problem. 

B.  More importantly, decision problem is easier (at 
least, not harder), so a lower bound on decision 
problem is a lower bound on general problem.
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Decision problem as a Language-
recognition problem

• Let U be the set of all possible inputs to the 
decision problem.

• L ⊆ U = the set of all inputs for which the 
answer to the problem is yes.

• We call L the language corresponding to the 
problem. (problem = language)

• The decision problem is thus:
– to recognize whether or not a given input belongs 

to L = the language recognition problem.
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The class NP

Definition: NP = set of problems solvable by a 
nondeterministic algorithm in polynomial time.

Another way of saying this: 
NP = The class of problems whose solution can 

be verified in polynomial time.
NP = “nondeterministic polynomial”

Examples: all of problems in P plus: SAT, TSP, 
Hamiltonian cycle, bin packing, vertex cover.
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Complexity Classes

P

NPNP = Polynomial-time 
verifiable

P = Polynomial-time 
solvable
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Verifying Solutions

Given a problem and a potential solution, 
verify that the solution is correct in 
polynomial-time.

In general, guess a solution, and then check if 
the guess is correct in polynomial time.
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Examples of Problems in NP

Vertex Cover
A vertex cover of G is a set of vertices such that 

every edge in G is incident to at least one of these 
vertices.  Example: 

Question: Given a graph G, integer k, determine 
whether G has a vertex cover containing ≤ k
vertices?

Verify: Given a set of ≤ k vertices, does it cover 
every edge? (Guess and check in polynomial 
time.)
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Examples of Problems in NP

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF) 

is satisfiable if there exists a truth assignment of 
0’s and 1’s to its variables such that the value of 
the expression is 1.  Example:

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)
Question: Given a Boolean formula in CNF, is it 

satisfiable?
Verify: Given a truth assignment, does it satisfy the 

formula? (Guess and check in polynomial time.)
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Problems in P can also be verified in 
polynomial-time

Shortest Path: Given a graph G with edge lengths,
is there a path from s to t of length ≤ k?

Verify: Given a path from s to t, is its length ≤ k?

Small Spanning Tree: Given a weighted undirected 
graph G, is there a spanning tree of weight ≤ k?

Verify: Given a spanning tree, is its weight ≤ k?
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Nondeterminism

• A nondeterministic algorithm has all the 
“regular” operations of any other algorithm 
available to it.

• In addition, it has a powerful primitive, the 
nd-choice primitive.

• The nd-choice primitive is associated with a 
fixed number of choices, such that each 
choice causes the algorithm to follow a 
different computation path.
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Nondeterminism (cont.)

• A nondeterministic algorithm consists of an 
interleaving of regular deterministic steps and 
uses of the nd-choice primitive.  

• Definition: the algorithm accepts a language L 
if and only if
– It has at least one “good” (accepting) sequence of 

choices for every x ∈ L, and
– For all x ∉ L, it reaches a reject outcome on all

paths.
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P vs NP vs Exponential Time

• Theorem: Every problem in 
NP can be solved 
deterministically in 
exponential time

• Proof: the nondeterministic 
algorithm makes only nk nd-
choices.  Try all 2nk

possibilities; if any succeed, 
accept; if all fail, reject.

nk

2nk

accept
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The class NP-complete

We are pretty sure that no problem in NP – P 
can be solved in polynomial time.

Non-Definition: NP-complete = the hardest
problems in the class NP.  (Formal definition 
later.) 

Interesting fact: If any one NP-complete 
problem could be solved in polynomial time, 
then all NP-complete problems could be 
solved in polynomial time.
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Complexity Classes

NP = Poly-time verifiable

P = Poly-time solvable

NP-Complete = “Hardest” 
problems in NP

NP

P

NP-Complete
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The class NP-complete (cont.)

Thousands of important problems have been 
shown to be NP-complete.

Fact (Dogma): The general belief is that there 
is no efficient algorithm for any NP-complete
problem, but no proof of that belief is known. 

Examples: SAT, clique, vertex cover, 
Hamiltonian cycle, TSP, bin packing.
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NP

P

NP-Complete

sorting
SCC
max flow
MST

SAT
clique
vertex cover
traveling salesman

Complexity Classes of Problems
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Does P = NP?

• This is an open question.
• To show that P = NP, we have to show that 

every problem that belongs to NP can be 
solved by a polynomial time deterministic 
algorithm.  

• No one has shown this yet.

• (It seems unlikely to be true.)
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Earlier in this class we learned techniques for 
solving problems in P.

Question: Do we just throw up our hands if we 
come across a problem we suspect not to be 
in P?
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Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:
1) Prove your problem is NP-complete

(a common, but not guaranteed outcome) 

2) Come up with an algorithm to solve the  
problem usually or approximately.
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Reductions: a useful tool

Definition: To reduce A to B means to figure out 
how to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2) th

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.
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More Examples of reductions 

Example: 
reduce BIPARTITE_MATCHING to   MAX_FLOW

s t

All capacities = 1

Is there a flow of size k?
u v

Is there a matching of size k?

f
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Polynomial-Time Reductions

Definition: Let L1 and L2 be two languages 
from the input spaces U1 and U2. 

We say that L1 is polynomially reducible to L2
if there exists a polynomial-time algorithm f
that converts each input u1 ∈ U1 to another 
input u2 ∈ U2 such that u1 ∈ L1 iff u2 ∈ L2.

u1 ∈ L1 ⇔ f(u1) ∈ L2
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Polynomial-time Reduction from language L1 to 
language L2 via reduction function f.

L1

U1 U2

L2
f

u1 ∈ L1 ⇔ f(u1) ∈ L2
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Polynomial-Time Reductions (cont.)

Define: A ≤p B “A is polynomial-time reducible to 
B”, iff there is a polynomial-time computable 
function f such that:   x ∈ A ⇔ f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f”

(1)  A ≤p B and  B ∈ P   ⇒ A ∈ P

(2)  A ≤p B and  A ∉ P   ⇒ B ∉ P

(3)  A ≤p B and  B ≤p C   ⇒ A ≤p C (transitivity)
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Using an Algorithm for B to Decide A

Algorithm 
to compute f

x Algorithm 
to decide B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to decide A

“If A ≤p B, and we can solve B in polynomial time,
then we can solve A in polynomial time also.”

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).  
How long does the above algorithm for A take?
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Definition of NP-Completeness

Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and 
(2) B is NP-hard.
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Proving a problem is NP-complete

• Technically,for condition (2) we have to show 
that every problem in NP is reducible to B. 
(yikes!) This sounds like a lot of work.

• For the very first NP-complete problem
(SAT) this had to be proved directly. 

• However, once we have one NP-complete 
problem, then we don’t have to do this every 
time.

• Why? Transitivity.
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Re-stated Definition

Lemma 11.3: Problem B is NP-complete if:
(1)  B belongs to NP, and 
(2’) A is polynomial-time reducible to B, for 

some problem A that is NP-complete.

That is, to show (2’) given a new problem B, it is 
sufficient to show that SAT or any other     
NP-complete problem is polynomial-time 
reducible to B.
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Usefulness of Transitivity

Now we only have to show L’ ≤p L , for some
problem L’∈ NP-complete , in order to show 
that L is NP-hard. Why is this equivalent?

1) Since L’∈ NP-complete , we know that L’ is
NP-hard.  That is:

∀ L’’ ∈ NP, we have L’’ ≤p L’
2) If we show L’ ≤p L, then by transitivity we know 

that: ∀ L’’ ∈ NP, we have L’’ ≤p L.
Thus L is NP-hard.
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The growth of the number of NP-
complete problems

• Steve Cook (1971) showed that SAT was   
NP-complete.

• Richard Karp (1972) found 24 more           
NP-complete problems.

• Today there are thousands of known            
NP-complete problems.
– Garey and Johnson (1979) is an excellent source 

of NP-complete problems.
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SAT is NP-complete

Cook’s theorem : SAT is NP-complete

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF) 

is satisfiable if there exists a truth assignment of 
0’s and 1’s to its variables such that the value of 
the expression is 1.  Example:

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)
Example above is satisfiable.  (We an see this by 

setting x=1, y=1 and z=0.)
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SAT is NP-complete

Rough idea of proof:

(1) SAT is in NP because we can guess a truth 
assignment and check that it satisfies the 
expression in polynomial time.

(2) SAT is NP-hard because …..

Cook proved it directly, but easier to see via an 
intermediate problem – Circuit-SAT
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Circuit-SAT ≤p 3-SAT
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How do you prove problem A is  
NP-complete?

1) Prove A is in NP: show that given a solution, it can 
be verified in polynomial time.

2) Prove that A is NP-hard:
a) Select a known NP-complete problem B.
b) Describe a polynomial time computable algorithm 
that computes a function f, mapping every instance 
of B to an instance of A.    (that is:  B ≤p A )
c) Prove that every yes-instance of B maps to a   
yes-instance of A, and every no-instance of B maps 
to a no-instance of A.
d) Prove that the algorithm computing f runs in 

polynomial time. CSE 421, W ‘01, Ruzzo 42

your 
function

f

1) Prove A is in NP: “ Given a possible solution to A, I can 
verify its correctness in polynomial-time.”

2) Prove that A is NP-hard:
a) “I will reduce known NP-complete problem B to A.”
b) “Let b be an arbitrary instance of problem B. Here is 
how you convert b to an instance a of problem A.”   
Note: this method must work for ANY instance of B.
c) “If a is a “yes”-instance, then this implies that b is also 
a “yes”-instance. Conversely, if b is a “yes”-instance, 
then this implies that a is also a “yes”-instance.”
d) “The conversion from B to A runs in polynomial 

time because….”

Proof that problem A is NP-complete
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Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of   

size ≤ k such that every edge in E is incident 
to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

NP-complete problem: Vertex Cover
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NP-complete problem: Clique

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of   

size ≥ k such that all vertices in C are 
connected to all other vertices in C.

Example: Clique of size ≥ 4
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NP-complete problem: 
Satisfiability (SAT)

Input: A Boolean formula in CNF form.
Output: True iff there is a truth assignment of 

0’s and 1’s to the variables such that the 
value of the expression is 1. 

Example:  Formula S is satisfiable  with the 
truth assignment x=1, y=1 and z=0.

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)
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NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of 

colors to the vertices in G such that no two 
adjacent vertices have the same color. (using 
only 3 colors)

Example:
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NP-complete problem: Knapsack

Input: set of objects with weights and values, a 
maximum weight that can be carried and a desired 
value. (see p. 357 in Manber)

Output: True iff there is a subset of the objects with 
(total weight ≤ allowable weight) and                    
(total value ≥ desired value).

Example: Items: {a, b, c},size(a)=3,size(b)=6,size(c)=4
value(a)=$30, value(b)=$24, value(c)=$18
Max weight = 10, Desired value = $50.

Answer: yes, {a,b} CSE 421, W ‘01, Ruzzo 48

NP-complete problem: Partition

Input: Set of items S, each with an associated 
size.  The sum of the items’ sizes is 2k.

Output: True iff there is a subset of the items 
whose sizes add up to k.

Example: S = (2,3,1,10,4,6). Is there a subset 
of items that sums to 13? (yes)
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NP-complete problem: TSP

Input: An undirected graph G=(V,E) with 
integer edge weights, and an integer b.

Output: True iff there is a simple cycle in G 
passing through all vertices (once), with total 
cost ��E�

Example:
b = 34

5
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A 3-Coloring Gadget

"Sort of an OR gate":

(1) if any input is T, 

the output can be T

(2) if output is T, 

some input must be T
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Coping with NP-Completeness

• Is your real problem a special subcase?
– E.g. 3-SAT is NP-complete, but 2-SAT is not;
– Ditto  3- vs 2-coloring
– E.g. maybe you only need planar graphs, or  degree 3 

graphs, or …

• Guaranteed approximation good enough?
– E.g. Euclidean TSP within 1.5 * Opt in poly time

• Clever exhaustive search, e.g. Branch & Bound

• Heuristics – usually a good approximation and/or 
usually fast
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2x Approximation to EuclideanTSP

• A TSP tour visits all vertices, so contains a 
spanning tree, so TSP cost is > cost of min 
spanning tree.

• Find MST

• Double all edges
• Find Euler Tour
• Shortcut
• Cost of shortcut < ET = 2 * MST < 2 * TSP

5

3

4

2

5
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1.5x Approximation to EuclideanTSP

• Find MST
• Find min cost matching 

among odd-degree 
tree vertices

• Cost of matching ≤ TSP/2
• Find Euler Tour
• Shortcut

• Shortcut  ≤ ET ≤ MST + TSP/2 < 1.5* TSP

5
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