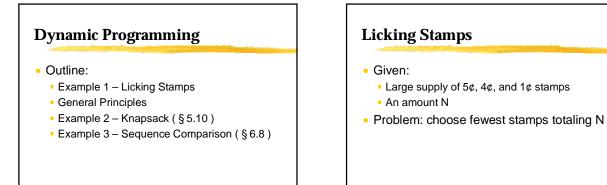


"Dynamic Programming"

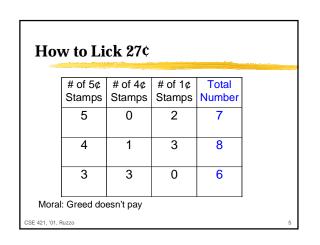
CSE 421, '01, Ruzzo

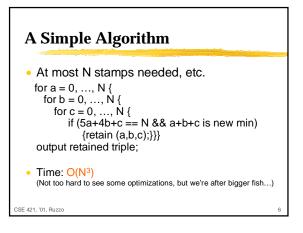
CSE 421, '01, Ruzzo

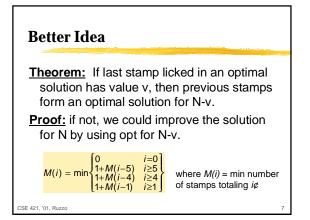
Program — A plan or procedure for dealing with some matter – Webster's New World Dictionary

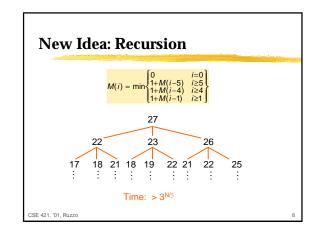


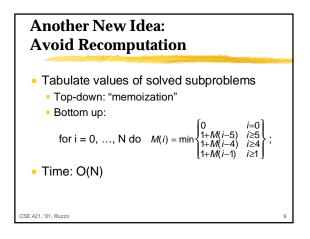
CSE 421, '01, Ruzzo

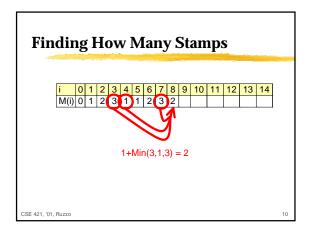


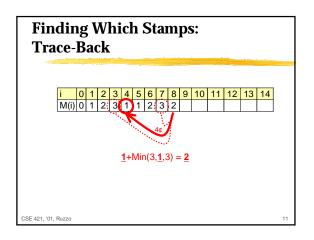


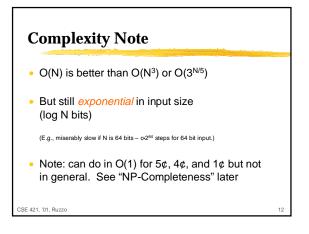












Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?
- "Optimal Substructure" Optimal solution contains optimal subproblems
- "Repeated Subproblems" The same subproblems arise in various ways

CSE 421, '01, Ruzzo

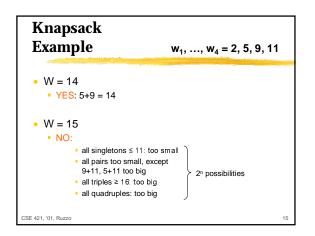
The Knapsack Problem (§ 5.10)

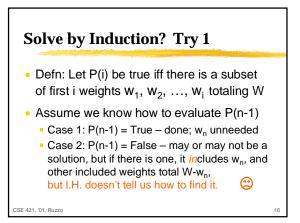
<u>Given</u> positive integers W, w_1 , w_2 , ..., w_{n_1} . <u>Find</u> a subset of the w_i 's totaling exactly W. <u>Alternate</u> (Easier?) Problem: <u>Is</u> there one?

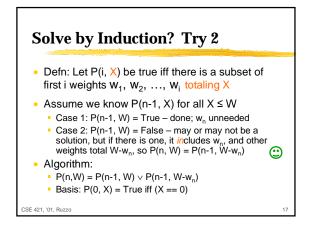
(Like stamp problem, but limited supply of each.)

Motivation: simple 1-d abstraction of packing boxes, trucks, VLSI chips, ...

CSE 421, '01, Ruzzo







Knapsack Example							$\begin{array}{c} P(n,W) = P(n-1, W) \lor P(n-1, W-w_n) \\ \\ w_1, \dots, w_4 = 2, 5, 9, 11 W{=}15 \end{array}$											
									-									
i∖X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0		
2	1	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0		
3	1	0	1	0	0	1	0	1	0	1	0	1	0	0	1	0		
4	1	0	1	0	0	1	0	1	0	1	0	1	0	0	(1)	0)	
E 421.				= 1 = 1			s -									*	18	

Dynamic Programming?

 $\mathsf{P}(\mathsf{n},\mathsf{W})=\mathsf{P}(\mathsf{n}\text{-}\mathsf{1},\,\mathsf{W})\lor\mathsf{P}(\mathsf{n}\text{-}\mathsf{1},\,\mathsf{W}\text{-}\mathsf{w}_{\mathsf{n}})$

- Optimal substructure? Best/only way to fill a big knapsack implicitly fills smaller ones with fewer objects in the best or only way
- Repeated subproblems?
 Smallest cases potentially common to many bigger instances

CSE 421, '01, Ruzzo

