CSE 421
Introduction to Algorithms

Depth First Search and
Strongly Connected Components

Undirected

Depth-First Search

= It's not just for trees e

DFS(v) A

bak {if v marked then return; &@ D)

wee [MAIK Vi #v := ++count; @

Edge{for all edges (v,w) \do DFS(w);

Mai n() NE;:SZ(;OK
count := 0; decreasing
for all unmarked v do DFS(v); 2

Undirected e —@

Depth-First Search \@g
= Key Properties: Cb

1. No “cross-edges”; @
only tree- or back-edges e N

2. Before returning, DFS(v) B

Directed Depth First Search

= Algorithm: Unchanged
= Key Properties:

2. Unchanged

1'. Edge (v,w) is:

visits all vertices reachable %! . as| Tree-edge if w unvisited
from v via paths through y\(ﬁ bemm{ Back-edge i wvisited, #w<#v, on stack
previously unvisited AL, { Cross-edge if w visited, #w<#v, not on stack
vertices 7D Forward-edge if w visited, #w>#v
Note: Cross edges only go “Right” to “Left” ,
An Application: Lemmal

G has a cycle = DFS finds a back edge

O Clear.
O Why can’'t we have something like this?:

Before returning, dfs(v) visits
— all unvisited vertices reachable from v
—only unvisited vertices reachable from v
All become descendants of v in the tree.

Proof:
— dfs follows all direct out-edges
— call dfs recursively at each
— by induction on path length, visits all

Strongly Connected Components

= Defn: G is strongly connected if for all
u,v there is a (directed) path from uto v
and from v to u.
[Equivalently:

there is a cycle through u and v.]

= Defn: a strongly connected component
of G is a maximal strongly connected
subgraph.

Note: collapsed
graphisaDAG 9

o ©,
@
o,
(4) |
[®

O @

\®,~

Usesfor SCC's

= Optimizing compilers need to find loops,
which are SCC'’s in the program flow
graph.

= Nontrivial SCC'’s in call-graph are sets
of mutually recursive procedures

= If (u,v) means process u is waiting for
process v, SCC’'s show deadlocks.

Two Simple SCC Algorithms

= U,V in same SCC iff there are
pathsu - v&v - u

= Transitive closure: O(n?)

= DFS from every u, v: O(ne) = O(n3)

11

Goadl:

= Find all Strongly Connected
Components in linear time,
i.e., time O(n+e)

(Tarjan, 1972)

Definition

The root of an SCC is the first vertex in
it visited by DFS.

Equivalently, the root is the vertex in the
SCC with the smallest number.

13

Subgoal

= Can we identify some root?

= How about the root of the first SCC
completely explored by DFS?

= Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)

15

Lemma?2

All members of an SCC are
descendants of its root.

Proof:
— all members are reachable from all others
— so, all are reachable from its root
— all are unvisited when root is visited
—s0, all are descendants of its root (Lemma 1)

14

\"
Definition A

x is an exitfrom v (from v's subtree) if
— X is not a descendant of v, but

—X is the head of a (cross- or back-) edge
from a descendant of v (including v itself)

NOTE: #x < #v

Lemma3 %

If v is not a root, then v has an exit.
Proof:
—letr be root of v's SCC
—ris a proper ancestor of v (Lemma 2)
— let x be the first vertex that is not a
descendant of von apathv - r.
— X is an exit

Cor: If v has no exit, then v is a root.
NB: converse not true; some roots do have exits 18

Lemma4

If r is the first root from which dfs
returns, then r has no exit

Proof:
— Suppose X is an exit
—let z be root of x¥'s SCC
—r not reachable from z, else in same SCC
—#z < #x (z ancestor of x; Lemma 2)
—#x < #r (xis an exit fromr)
—#z <#r,noz - r path, so return from z first
— Contradiction

19

1stroot:
LOW(v)=v

~ o afwn]

@
~ o wlw

8,9
10 10
11,12|10
13 13

21

ren~awel |

5]

Lemma3

If v is not a root, then v has an exit ,.

—letr beroot of v’'s SCC
—ris a proper ancestor of v (Lemma 2)
—let x be the first vertex that is not a

descendant of von apathv - r.
—x is an exit m
Cor: If v has no exit,, then v is a root.
fvssed -

How to Find EXits (in 1% component)

= All exits x from v have #x < #v
= Suffices to find any of them, e.g. min #

= Defn:

LOW(v) = min({ #x | x an exit from v} O {#v})
Calculate inductively:

LOW(v) = min of: %o,

—#v X, oY
— {LOW(w) | w achild of v} Wy $w, % W,
— {#x| (v,x) is a back- or cross-edge } « ~ A",

= 1stroot: LOW(v)=v

Finding Other Components

= Key idea: No exit from
—1stsccC
—2nd SCC, except maybe to 1st
— 3 SCC, except maybe to 1st and/or 2nd

22

Lemma4’

If ris the T'htsl;root from which dfs

returns, then r has no exit

Proof: except possibly
— Suppose X is an exit to the first (k-1)
—let z be root of X¥'s SCC | components
—r not reachable from z, else in same SCC
—#z < #x (z ancestor of x; Lemma 2)

—#x < #r (xis an exit fromr)
—#z <#r,noz - r path, so return from z first

~enadelon
24

kth
How to Find EXits (in 1¢'component)

= All exits x from v have #x < #v
= Suffices to find any of them, e.g. min #

= Defn:
LOW(v) = min({ #x | x an exit from v } I {#v})
= Calculate inductively:
LOW(v) = min of:
—#v
— {LOW(w) | w a child of v}
— {#x] (v,x) is a back- or cross-edge

and x not in first
(k-1) components

25

29

SCC Al gon thm #v = DFS number
v.low = LOW(v)
v.scc = component #

SCC(v)

#v = vertex_number++; v.low = #v; push(v)
for all edges (v,w)
if #w == 0 then
SCC(w); v.low = min(v.low, w.low) // tree edge
else if #w < #v && w.scc == 0 then
v.low = min(v.low, #w) /I cross- or back-edge
if #v == v.low then Il v is root of new scc
SCCH#++,
repeat
w = pop(); w.scc = scc#; // mark SCC members
until w==v
26

Complexity

= Look at every edge once

= Look at every vertex (except via in-
edge) at most once

= Time = O(n+e)

28

