CSE 417 Autumn 2025

Lecture 12: Pathfinding

Glenn Sun

Logistics

- Quiz on Friday in class
 - Practice quiz posted on course website
 - Special concept check quiz for Wednesday
- HW 4 dates adjusted
 - New due date:
 - New resubmission date:

Wrapping up Prim's algorithm

Prim's algorithm

- 1. repeat n-1 times
- 2. Pick the cheapest edge that extends the current tree to a new vertex.

Remember only cheapest edge for every discovered vertex!

- Up to O(n) vertices in data structure
- Operations that we do:
 - Pick cheapest vertex O(n) times
 - Update the cost of vertices O(m) times total

Priority queues

A priority queue is an abstract data type similar to a queue, but allows you to get the highest priority elements first.

It supports:

- add an element at a given priority
- make a whole priority queue from a given list with priorities
- extract the highest (minimum) priority element
- peek the highest (minimum) priority element (without deleting)
- decrease the priority of a given element to a new priority

Priority queues

(last lecture)		(from 373)	(just FYI)
		+	
	w/	w/ binary	w/ Fibonacci
	array	heap	heap
add(elt, prty)	0(1)	$O(\log n)$	O (1)
make(list)	O (n)	O (n)	O(n)
extractMin()	O (n)	$O(\log n)$	$O(\log n)$
peekMin()	O(n)	0(1)	O (1)
decrPriority(elt, prty)	0(1)	$O(\log n)$	0 (1) amortized

Running time of Prim's

As always, assuming $n \le m \le n^2$:

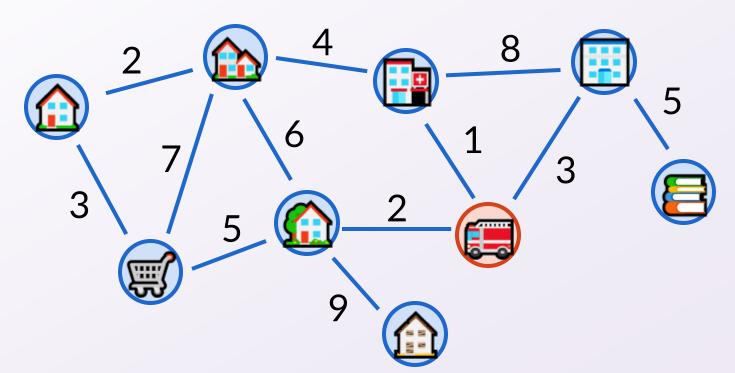
	w/ array	w/ binary heap	w/ Fibonacci heap
extractMin()	O(n)	$O(\log n)$	$O(\log n)$
decrPriority(elt, prty)	0 (1)	$O(\log n)$	0 (1) amortized
Extract min $O(n)$ times and decrease priority $O(m)$ times			

Dijkstra's algorithm

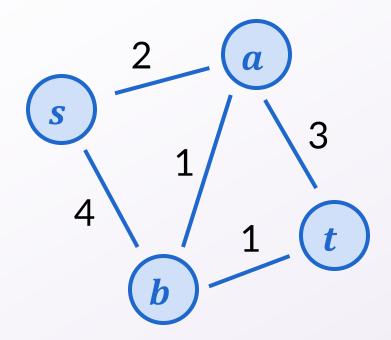
Emergency snow network

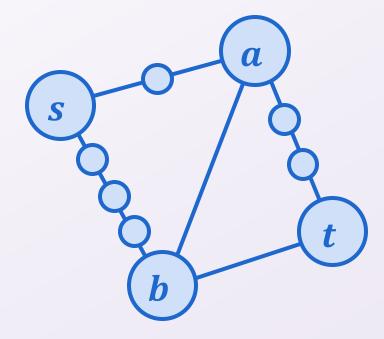
A city has a network of roads of various lengths.

Goal: Find a minimum length network to plow that ensures that the fire department can reach everyone as fast as possible.

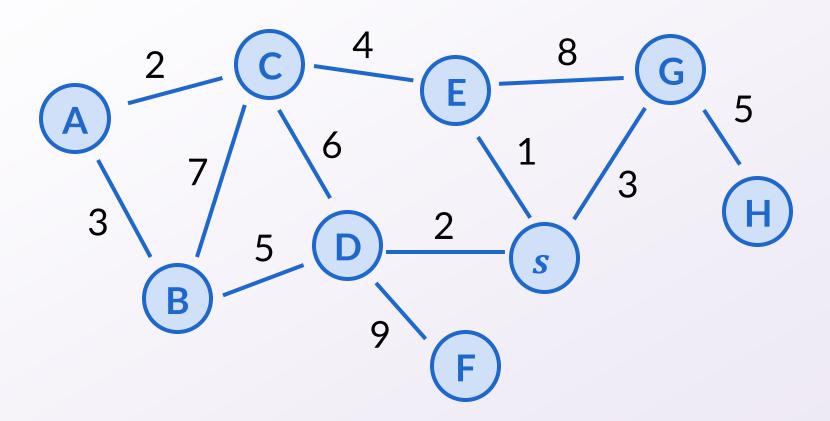


Dijkstra's algorithm is basically BFS





A larger example



Dijkstra's algorithm

- 1. Set currPriority[s] = 0 and currPriority[x] = ∞ for other x.
- 2. Make a priority queue Q with every vertex at its priority above.
- 3. while *Q* is not empty do
- 4. Get/remove the next vertex x from Q.
- 5. for all out-neighbors y of x do
- 6. if currPriority[y] > currPriority[x] + dist(x, y) then
- 7. Update currPriority[y] = currPriority[x] + dist(x, y).
- 8. Decrease the priority of y in Q to currPriority[y].
- 9. return currPriority

Running time of Dijkstra's

- Up to n "extract" operations (get each vertex at most once)
- Up to m "decrease priority" operations (look at each edge at most once)

Same as Prim's algorithm!

- With $O(\log n)$ "extract" and "decrease priority": $O(m \log n)$
- With Fibonacci heap (O(1) "decrease priority"): $O(m + n \log n)$

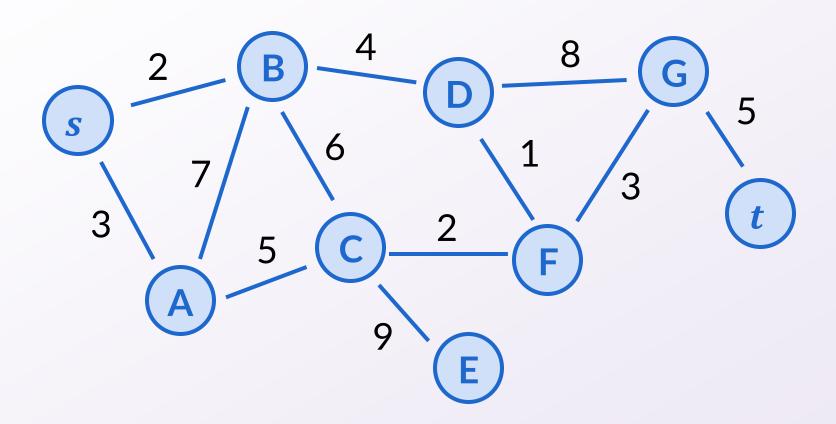
Shortest s-t path

Dijkstra's algorithm can be used to:

- Compute the distance of every vertex from a given point
- Compute the distance between two points
 - Just break upon finding the desired point
 - No asymptotic improvement in running time

What if instead of finding the minimum length of a path from *s* to *t*, you were asked to find an actual path from *s* to *t* whose length is minimum?

Common strategy: leave "breadcrumbs" tell you where you came from in your search



- 1. Set currPriority[s] = 0 and currPriority[x] = ∞ for other x.
- 2. Make a priority queue *Q* with every vertex at its priority above.
- 3. while *Q* is not empty do
- 4. Get/remove the next vertex x from Q.
- 5. for all out-neighbors y of x do
- 6. if currPriority[y] > currPriority[x] + dist(x, y) then
- 7. Set cameFrom[y] = x.
- 8. Update currPriority[y] = currPriority[x] + dist(x, y).
- 9. Decrease the priority of y in Q to currPriority[y].

Now trace back to construct the path:

- 10. Let v = t and initialize a list of vertices path to [t].
- 11. while $v \neq s$ do
- 12. Update v = cameFrom[v].
- 13. Append v to path.
- 14. return path in reverse order

A* search and heuristic algorithms

Pathfinding on a grid

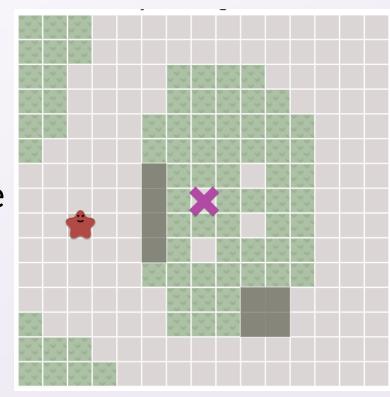
Suppose a video character is moving through a 2D area

represented by a grid of tiles:

Dirt tiles: fast to walk on, 1 sec/tile

Tall grass: slow to walk through: 2 sec/tile

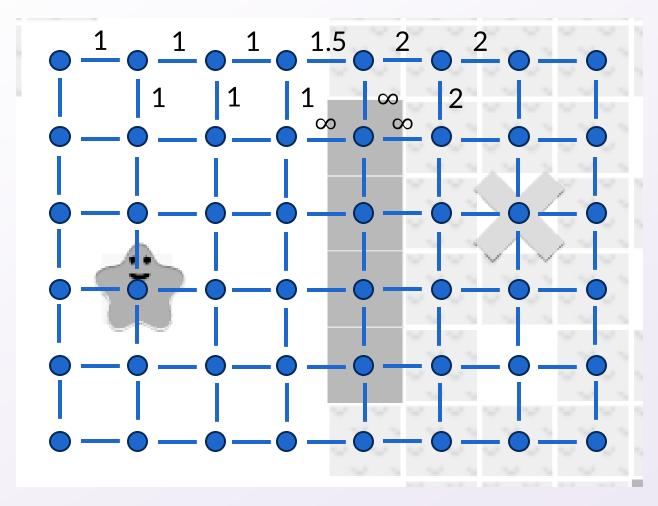
- Boulders: impassible objects
- Maybe more



graphics: **Amit Patel**

Pathfinding on a grid

Idea #1: Dijkstra's algorithm on a grid



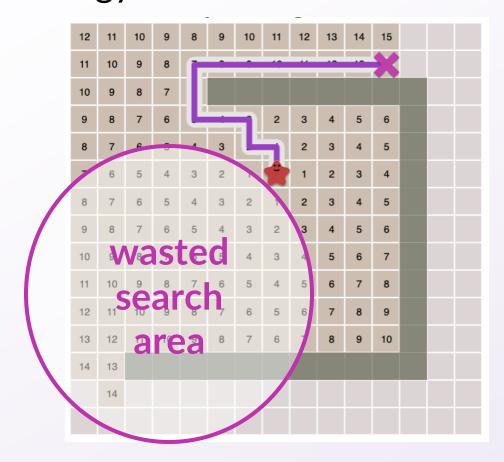
Dijkstra's for pathfinding

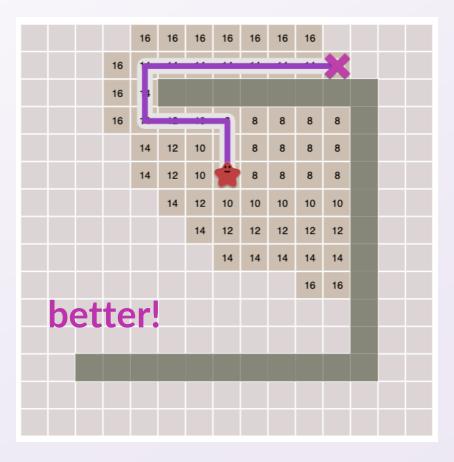
Use the "breadcrumbs" modification we discussed earlier.

Works okay! Guaranteed to find solution in O(n) time, where n is the number of pixels in the grid.

Dijkstra's for pathfinding

Dijkstra's is not ideal though, because breadth-first is a bad search strategy in 2D.





A* search

Define a heuristic to quickly gauge how good a choice is:

heuristicDist
$$((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$

In Dijkstra's algorithm, replace:

$$currPriority[y] = currPriority[x] + dist(x, y)$$

with

$$currPriority[y] = currDistance[x] + dist(x, y) + heurDist(y(t))$$

A* search is not asymptotically better

Sometimes, algorithms are not designed to be asymptotically better. Small improvements for a particular application matter!

But is A* search still correct for shortest paths?

Theorem. If the heuristic only ever underestimates distance, A* search still produces the shortest path!

Final reminders

Fill out concept check for Wednesday review topics!

I have OH now-12:30pm:

- Meet at front of classroom, we'll walk over together
- CSE (Allen) 214 if you're coming later

Nathan has online OH 12-1pm:

https://washington.zoom.us/my/nathanbrunelle