CSE 417 Autumn 2025

Lecture 3: Proof Techniques

Nathan Brunelle



Concept check quizzes

Remember: unlimited submissions, and are marked “incomplete”
until you get every question right.

One-time extension for everyone until 12:30pm today!

Be sure to get those in on time going forward.



Homework 1

HW 1 due this Friday at 11:59pm.

* Problem 1 (Grading ChatGPT): Read ChatGPT'’s response to a
guestion about stable matchings, and explain where the LLM
made mistakes.

* Problem 2 (Business profit): Write a super simple algorithm for
a basic task, and prove its correctness (today’s lecture!)



Todo

« Homework 1 due this Friday at 11:59pm

 Reading + Concept checks for each lecture!



Proof writing practice



Proof Techniques

Claim: If property P is true, then property Q is true.

Direct proof: Start with statement “P is true”, then write down a sequence of
consequences until reaching “Q is true”.

Indirect Proof (by contrapositive): Start with statement “Q is false”, then write down a
sequence of consequences until reaching “P is false”.

Contradiction: Start with the statement “P is true and Q is false”, then write a sequence
of consequences until reaching a statement that is obvious impossible.

Counterexample (for proving false): Give one thing that has property P but not Q.

Cases: If there are multiple ways for property P to be true, you can consider each
different way separately.



Let’s Practice! (Example 1)



Example 1

 Claim: If n and m are both odd, then n + m is even.

Direct Proof Indirect Proof Contradiction Counterexample

Start with: n and m are Start with: n + m is odd Start with: n, m, andn + Find an example of odd n

both odd m are all odd and m suchthatn + mis
End with: at least one of n also odd.

End with: n + m is even and m is even End with: something that’s

clearly wrong

Do you think the statement is true or false? TRUE

 Which strategy seems easiest to you? DIRECT



Example 1: Direct proof

Claim: If n and m are both odd, then n + m is even.

Proof: suppose n and m are both odd

Applying the definition of odd, we cansay n = 2x + 1,and m = 2y + 1.
Thismeansn+m=2x+1+2y+1
Thereforen+m=2x+2y+2=2(x+y+1)

And so by definition n + m is even.



Let’s Practice! (Example 2)



Example 2

« Claim: If n and m are both integers, then n? — 4m # 2

Direct Proof Indirect Proof Contradiction Counterexample

Start with: n and m are Start with: n?> — 4m = 2 Start with: n and m are Find an example of

both integers integers such that n? — integers n and m such that
End with: at leastoneofn 4m = 2 n® —4m = 2.

End with: n? — 4m # 2 and m is not an integer

End with: something that’s
clearly wrong

Do you think the statement is true or false? TRUE

* Which strategy seems easiest to you? CONTRADICTION



Example 2: Proof by Contradiction

Claim: If n and m are both integers, then n? — 4m = 2

Proof: suppose, towards reaching a contradiction, that we have integers n and m such that n? — 4m =
2

n®—4m =2
n®=2+4m

This means that n? must be even. From our proofs in the reading, n must also be even
n=2x

So now, n? = 4x?

Thus 4x2 = 2 + 4m

This contradicts that n and m are integers



Let’s Practice! (Example 3)



Example 3

e Claim: If 4n3 + 8 is even then n is even

Direct Proof Indirect Proof Contradiction Counterexample

Start with: 4n3 + 8iseven Start with: nis odd Start with: n is odd and Find an example of an odd
4n3 + 8is even integer n such that 4n3 + 8
End with: n is even End with: 4n3 + 8is odd End with: something that’s is even

clearly wrong

Do you think the statement is true or false? FALSE

 Which strategy seems easiest to you? COUNTEREXAMPLE



Example 3: Indirect proof - BAD

Claim: If 4n3 + 8 is even then n is even

Proof: Suppose n is even. So n = 2x. Then we can see that 4n3 +
8 = 4(2x)3 + 8 = 4 - 8x3 + 8 which is even.



Example 3: Counterexample

Claim: If 4n3 + 8 is even then n is even

Proof: let n = 1. Note that 4(1)3 + 8 = 12 which is even.



Let’s Practice! (Example 4)



Example 4

e Claim: If n® + 5 is odd then n is even

Direct Proof Indirect Proof Contradiction Counterexample

Start with: n°® + 5 is odd Start with: n is odd Start with: nandn3 + 5 Find an example of an odd
are both odd integer n suchthatn3 + 5
End with: n is even End with: n3 + 5is even End with: something that’s is odd

clearly wrong

Do you think the statement is true or false? TRUE

* Which strategy seems easiest to you? CONTRADICTION



Example 4: Proof by Contradiction

Claim: If n3 4+ 5 is odd then n is even

Proof: suppose, towards reaching a contradiction, that we have an odd integer n such that n3 + 5 is
odd

Since n is odd, we can say n = 2x + 1. Since n® + 5is odd, we cansay n® + 5 =2y + 1

So starting with n3 + 5 = 2y + 1 we can substitute 2x + 1 for n to get (2x + 1)3 + 5 = 2y + 1. The we
apply algebra as follows:

2y+1=02x+1)3+5
2y+1=8x3+12x>+6x+1+5
2y = 8x3+ 12x>+ 6x+5

5
y=4x3+6x2+3x+§

So y is not an integer, which is a contradiction!



Let’s Practice! (Example 5)



Example 5

« Claim: If nm is even then at least one of n and m is even

Direct Proof Indirect Proof Contradiction Counterexample

Start with: nm is even Start with: bothn and m Start with: nm is evenand Find an example of an odd
are odd both of n and m are odd integers n and m such that

End with: nisevenormis End with: something that’s nm is even

even (or both) End with: nm is even clearly wrong

Do you think the statement is true or false? TRUE

 Which strategy seems easiest to you? CONTRAPOSITIVE



Example 5: Indirect proof

Claim: If nm is even then at least one of n and m is even

Proof: Suppose n and m are both odd. We will sayn = 2x + 1 and
m=2y+1

Andsonm=2x+1)Q2y+1)=4xy+2x+2y+1=202xy +
x +vy) + 1 which is odd.



Let’s Practice! (Example 6)



Example 6

 Claim: If x%(y% — 2y) is odd then both x and y are odd

Start with: x*(y? — 2y) is  Start with: at least one of  Start with: x?(y* — 2y)is Find pair of integers x and

odd x and y is even odd and at least one of x or y where at least one s
y is even even and x?(y? — 2y) is

End with: both x and y are End with: x?(y? — 2y)is  End with: somethingthat’s odd

odd even clearly wrong

Do you think the statement is true or false? TRUE

* Which strategy seems easiest to you? INDIRECT



Example 6: Indirect proof

Claim: If x2(y? — 2y) is odd then both x and y are odd
Proof: Suppose that x is even or y is even
Case 1: x is even

Because x is even we can say x = 2a. This means that:
x2(y? - 2y) = 2a)*(y* — 2y) = 4a*(y? — 2y) = 2((2a®)(y? — 2y))

Which is even

Case2: y is even

Because y is even we can say y = 2b. This means that:

x2(y? — 2y) = x%((2b)? — 2(2b)) = x2(4b? — 4b) = 2(2x2(b? — b)) which is even.

Because either one of x or y being even makes x?(y? — 2y) even, our proof is complete



Let’s Practice! (Example 7)



Example 7

o Claim: If 4n3 + 8 is odd then n is even

Direct Proof Indirect Proof Contradiction Counterexample

Start with: 4n3 + 8isodd  Start with: n is odd Start with: n and 4n3 + 8  Find an example of an odd
are both odd integer n such that 4n3 + 8
End with: n is even End with:4n3 + 8is even End with: something that’s is odd

clearly wrong

Do you think the statement is true or false?

 Which strategy seems easiest to you?



Example 7: Direct Proof

Claim: If 4n3 + 8 is odd then n is even

Proof: Suppose 4n3 + 8 is odd



Example 7: Indirect proof

Claim: If 4n3 + 8 is odd then n is even

Proof: Suppose n is even



Example 7: Proof by Contradiction

Claim: If 4n3 + 8 is odd then n is even

Proof: suppose, towards reaching a contradiction, that we have an
odd integer n such that 4n3 + 8 is odd
4n3 +8 =2x+1
2(2n®+8) =2x+ 1

So an odd integer equals an even integer, which is a contradiction.



Example 7: Counterexample

Claim: If 4n3 + 8 is even then n is even

Proof: letn =777



Vacuous Truth

« If we have a claim of the form “If property P is true then
property Q is true” and it is impossible for property P to be
true, the entire statement is actually a true statement!

 We say that statement is “vacuously true”



Review: What is correctness?



Review: Correctness

Algorithm: A list of unambiguous instructions to solve a class of
computational problems

An algorithm is correct for a given problem if it has:

1. Soundness: Running it never raises exceptions/errors
2. Termination: All loops terminate

3. Validity: The output meets the problem specification



Review: Selection sort (1/6)

Input: Array A[1 ...n| of numbers
Goal: A permutation of A that is sorted in decreasing order

1. fori=1,..,ndo

2 Let A[j| be the maximum element of A[i ... n].
3. Swap Ali| and A[j].

4. return A



Review: Selection sort (2/6)

Q: Explain why “no exceptions” is true for this algorithm.

A: Two things:
1. Array access on i is within bounds because 1 < i < n (line 1).

2. Maximum element A[j]| exists because i = 1, so A[1 ...i] is

nonempty.

Note: The concept of “error” in pseudocode is broader than code:
whenever you say “let x be the ...,” make sure it exists!

Q: “loops terminate”?
A: For-loops always terminate!



Selection sort (3/6)

Q: What are some loop invariants that will help us show “meets
specification”?

A: Here are some natural ideas:
1. After every iteration, array A4 is a permutation of the original.

2. After iteration i, subarray A[1 ...i] is sorted in decreasing
order.



Selection sort (4/6)

1. After every iteration, array A4 is a permutation of the original.
Proof. Before the loop starts: 4 is unchanged.

After each iteration: By the previous iteration, 4 starts out as a
permutation of the original array.

Because we only modify 4 by swapping elements, it remains a
permutation of the original at the end of this iteration.



Selection sort (5/6)

2. After iteration i, subarray A[1 ...i] is sorted in decreasing
order.

Proof. Before the loop starts: A[1 ... 0] is empty.

After each iteration: By the previous iteration, A[1 ...i — 1] starts
out sorted in decreasing order.

To show A[1 ...i| ends up sorted, we need A[i — 1| = Ali].

(Then let’s look at the code again to see what happens.)



Selection sort (6/6)

Input: Array A[1 ...n| of numbers
Goal: A permutation of A that is sorted in decreasing order

.fori=1,..,ndo
Let A[j| be the maximum element of A[i ... n].

1
2
j’ Swap A[i] and A[j]. Stuck because this iteration doesn’t

AU /2 give any information about 4|i — 1]!

Instead, strengthen the loop invariant

to know more about A4|i — 1].




Alternative invariant (1/3)

2. After iteration i, subarray A[1 ...i] each index j where 1 < j <
i contains the jth largest element of A.

Proof. Before the loop starts: A[1 ... 0] is empty.

After each iteration: By the previous iteration, each index of j
of A[1 ...i — 1] contains the jth largest element of A.

We need to prove that index i contains the ith largest element of
A after iteration i.



Alternative invariant (2/3)

After each iteration: By the previous iteration, each index of j
of A[1...i — 1] contains the jth largest element of A.

To prove that index i also contains the ith largest element of A4 after
iteration i:

_ines 2 and 3 of the algorithm guarantee that index i will contain the
argest element from A[i ... n]. This means that so long as that value is

ess than or equal to everything currently in the range A[1 ...i — 1] our
invariant holds.

That statement is guaranteed by the previous iteration!



Alternative Invariant (3/3)

What we know now: Every index of i of A[1 ...n] contains the ith
largest element of A.

What we need to show: At the end of our algorithm, A is in
decreasing order.

Final step: Show that if every index of i of A[1 ... n| contains the
ith largest element of A4, then 4 is in decreasing order.



Final step

Claim: If every index of i of A[1 ...n| contains the ith largest
element of A4, then 4 is in decreasing order.

Assumption: every index of i of A[1 ... n| contains the ith largest
element of 4

Conclusion: A is in decreasing order

Direct Proof Indirect Proof Contradiction Counterexample

Every index i contains he Ais notin decreasing Every index i contains he Find a permutation of A
ith largest element order ith largestelementand A  thatis notin decreasing
is not in decreasing order order, but every index i
contains he ith largest
element



Indirect proof

Claim: If A is not in decreasing order then some index of i of A[1 ...n]| does
not contain the ith largest element of A

Proof: Suppose that 4 is not in decreasing order. This means that there is at
least one pair of indices i + 1 and i such that A|i] < A[i + 1]. Select i so that
this is the first such pair.

Since this is the first out-of-order pair, we can conclude that A[i] is smaller
than or equal to all values in the range A|1 ...i — 1], and so there are at least
i — 1 elements greater than or equal to Ali]. Since Ali] < A[i + 1] as well,
there are at least i elements greater than Ali], so A|i] is not the ith largest
element of A.



Contradiction

Claim: If every index of i of A[1 ...n| contains the ith largest element of A, then A4 is in decreasing
order.

Proof: We proceed by contradiction. Suppose we have a permutation of that is not in decreasing
order, but every index i contains he ith largest element.

Because every index i contains the ith largest element, we know that there are not more thani — 1
elements that are greater than Ali].

If A is not in decreasing order. This means that there is at least one pair of indices i + 1 and i such that
Ali] < Ali + 1]. Select i so that this is the first such pair.

Since this is the first out-of-order pair, we can conclude that A[i] is smaller than or equal to all values in
the range A|1 ...i — 1], and so there are at least i elements greater than or equal to Ali]. Since Ali] <
A[i + 1] as well, there are at least i elements greater than Ali]. This contradicts the assumption that
index i contains the ith largest element.



Proof writing tips
Writing proofs often involves failing. If some path seems like a dead end, try at different approach!

«  Start by first guessing whether the statement is true or false.

 Next, write out what each proof strategy requires us to demonstrate. Then try to guess at which
one seems easiest, start working on that one

« Repeatedly apply definitions of things to re-express statements. Write down all things you can
think of that are true and relevant based on those statements

« If you get stuck, transition to another strategy. If you keep getting stuck, return to a previous one

Proof techniques are not exclusive. You may find that you embed one strategy for one part of a
larger proof

« |f you're getting frustrated, come to office hours!



Final reminders

HW1 released at 11:30am!

| have OH now-12:30pm:
« Meet at front of classroom, we’ll walk over together
« CSE (Allen) 343 if you're coming later

Nathan has online OH 12-1pm:
 Link on Canvas/course website
 https://washington.zoom.us/my/nathanbrunelle



https://www.google.com/url?q=https%3A%2F%2Fwashington.zoom.us%2Fmy%2Fnathanbrunelle&sa=D&source=calendar&ust=1759256220000000&usg=AOvVaw3W5pW0Thw9yLT1eqiMRXM6
https://www.google.com/url?q=https%3A%2F%2Fwashington.zoom.us%2Fmy%2Fnathanbrunelle&sa=D&source=calendar&ust=1759256220000000&usg=AOvVaw3W5pW0Thw9yLT1eqiMRXM6
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