#### **CSE 417 Autumn 2025**

#### Lecture 3: Proof Techniques

Nathan Brunelle

#### Concept check quizzes

Many students haven't done it yet 😟

Remember: unlimited submissions, and are marked "incomplete" until you get every question right.

One-time extension for everyone until 11:59pm tonight!

Be sure to get those in on time going forward.

#### **Homework 1**

HW 1 due this Friday at 11:59pm.

- Problem 1 (Grading ChatGPT): Read ChatGPT's response to a question about stable matchings, and explain where the LLM made mistakes.
- Problem 2 (Business profit): Write a super simple algorithm for a basic task, and prove its correctness (today's lecture!)

#### Todo

- Homework 1 due this Friday at 11:59pm
- Reading + Concept checks for each lecture!

# **Proof writing practice**

#### **Proof Techniques**

- Claim: If property P is true, then property Q is true.
- **Direct proof:** Start with statement "P is true", then write down a sequence of consequences until reaching "Q is true".
- Indirect Proof (by contrapositive): Start with statement "Q is false", then write down a sequence of consequences until reaching "P is false".
- **Contradiction:** Start with the statement "P is true and W is false", then write a sequence of consequences until reaching a statement that is obvious impossible.
- Counterexample (for proving false): Give one thing that has property P but not Q.
- Cases: If there are multiple ways for property P to be true, you can consider each different way separately.

Let's Practice! (Example 1)

#### Example 1

• Claim: If n and m are both odd, then n+m is even.

| <b>Direct Proof</b>                         | Indirect Proof                                       | Contradiction                                   | Counterexample                                        |
|---------------------------------------------|------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|
| <b>Start with:</b> $n$ and $m$ are both odd | <b>Start with:</b> $n + m$ is odd                    | Start with: $n, m$ , and $n + m$ are all odd    | Find an example of odd $n$ and $m$ such that $n+m$ is |
| End with: $n + m$ is even                   | <b>End with:</b> at least one of $n$ and $m$ is even | <b>End with:</b> something that's clearly wrong | also odd.                                             |

- Do you think the statement is true or false?
- Which strategy seems easiest to you?

## **Example 1: Direct proof**

Claim: If n and m are both odd, then n + m is even.

**Proof:** suppose n and m are both odd

#### **Example 1: Indirect proof**

Claim: If n and m are both odd, then n + m is even.

**Proof:** Suppose n + m is odd

### **Example 1: Proof by Contradiction**

Claim: If n and m are both odd, then n + m is even.

**Proof:** suppose, towards reaching a contradiction, that n, m, and n+m are all odd

Let's Practice! (Example 2)

### Example 2

• Claim: If n and m are both integers, then  $n^2 - 4m \neq 2$ 

| <b>Direct Proof</b>                                                    | Indirect Proof                                                                              | Contradiction                                                 | Counterexample                                                     |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| Start with: $n$ and $m$ are both integers  End with: $n^2 - 4m \neq 2$ | Start with: $n^2 - 4m \neq 2$<br>End with: at least one of $n$<br>and $m$ is not an integer | Start with: $n$ and $m$ are integers such that $n^2 - 4m = 2$ | Find an example of integers $n$ and $m$ such that $n^2 - 4m = 2$ . |
|                                                                        |                                                                                             | <b>End with:</b> something that's clearly wrong               |                                                                    |

- Do you think the statement is true or false?
- Which strategy seems easiest to you?

#### **Example 2: Direct proof**

Claim: If n and m are both integers, then  $n^2 - 4m \neq 2$ 

**Proof:** suppose n and m are both integers

#### **Example 2: Indirect proof**

Claim: If n and m are both integers, then  $n^2 - 4m \neq 2$ 

**Proof:** Suppose  $n^2 - 4m = 2$ 

#### **Example 2: Proof by Contradiction**

Claim: If n and m are both integers, then  $n^2 - 4m \neq 2$ 

**Proof:** suppose, towards reaching a contradiction, that we have integers n and m such that  $n^2 - 4m = 2$ 

Let's Practice! (Example 3)

### Example 3

• Claim: If  $4n^3 + 8$  is even then n is even

| <b>Direct Proof</b>                   | Indirect Proof                | Contradiction                                        | Counterexample                                             |
|---------------------------------------|-------------------------------|------------------------------------------------------|------------------------------------------------------------|
| <b>Start with:</b> $4n^3 + 8$ is even | <b>Start with:</b> $n$ is odd | <b>Start with:</b> $n$ is odd and $4n^3 + 8$ is even | Find an example of an odd integer $n$ such that $4n^3 + 8$ |
| End with: $n$ is even                 | End with: $4n^3 + 8$ is odd   | <b>End with:</b> something that's clearly wrong      | is even                                                    |

- Do you think the statement is true or false?
- Which strategy seems easiest to you?

#### **Example 3: Indirect proof**

Claim: If  $4n^3 + 8$  is even then n is even

**Proof:** Suppose *n* is even

#### **Example 3: Counterexample**

Claim: If  $4n^3 + 8$  is even then n is even

**Proof:** let n = ???

Let's Practice! (Example 4)

#### Example 4

• Claim: If  $n^3 + 5$  is odd then n is even

| <b>Direct Proof</b>                 | Indirect Proof                | Contradiction                                     | Counterexample                                            |
|-------------------------------------|-------------------------------|---------------------------------------------------|-----------------------------------------------------------|
| <b>Start with:</b> $n^3 + 5$ is odd | <b>Start with:</b> $n$ is odd | <b>Start with:</b> $n$ and $n^3 + 5$ are both odd | Find an example of an odd integer $n$ such that $n^3 + 5$ |
| End with: n is even                 | End with: $n^3 + 5$ is even   | <b>End with:</b> something that's clearly wrong   | is odd                                                    |

- Do you think the statement is true or false?
- Which strategy seems easiest to you?

## **Example 4: Direct proof**

Claim: If  $n^3 + 5$  is odd then n is even

**Proof:** suppose  $n^3 + 5$  is odd

### **Example 4: Indirect proof**

Claim: If  $n^3 + 5$  is odd then n is even

**Proof:** Suppose *n* is odd

#### **Example 4: Proof by Contradiction**

Claim: If  $n^3 + 5$  is odd then n is even

**Proof:** suppose, towards reaching a contradiction, that we have an even integer n such that  $n^3 + 5$  is even

Let's Practice! (Example 5)

#### Example 5

• Claim: If nm is even then at least one of n and m is even

| <b>Direct Proof</b>                                       | Indirect Proof                              | Contradiction                                                                                                    | Counterexample                                                        |
|-----------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Start with: $nm$ is even  End with: $n$ is even or $m$ is | <b>Start with:</b> both $n$ and $m$ are odd | <b>Start with:</b> <i>nm</i> is even and both of <i>n</i> and <i>m</i> are odd <b>End with:</b> something that's | Find an example of an odd integers $n$ and $m$ such that $nm$ is even |
| even (or both)                                            | End with: $nm$ is even                      | clearly wrong                                                                                                    |                                                                       |

- Do you think the statement is true or false?
- Which strategy seems easiest to you?

#### **Example 5: Direct proof**

Claim: If nm is even then at least one of n and m is even

**Proof:** suppose *nm* is even

#### **Example 5: Indirect proof**

Claim: If nm is even then at least one of n and m is even

**Proof:** Suppose n and m are both odd

#### **Example 5: Proof by Contradiction**

Claim: If nm is even then at least one of n and m is even

**Proof:** suppose, towards reaching a contradiction, that we have odd integers n and m such that nm is even

Let's Practice! (Example 6)

### Example 6

• Claim: If  $x^2(y^2 - 2y)$  is odd then both x and y are odd

| <b>Direct Proof</b>                       | Indirect Proof                                         | Contradiction                                                                    | Counterexample                                                                      |
|-------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Start with: $x^2(y^2 - 2y)$ is odd        | <b>Start with:</b> at least one of $x$ and $y$ is even | <b>Start with:</b> $x^2(y^2 - 2y)$ is odd and at least one of $x$ or $y$ is even | Find pair of integers $x$ and $y$ where at least one is even and $x^2(y^2 - 2y)$ is |
| <b>End with:</b> both $x$ and $y$ are odd | End with: $x^2(y^2 - 2y)$ is even                      | End with: something that's clearly wrong                                         | odd                                                                                 |

- Do you think the statement is true or false?
- Which strategy seems easiest to you?

#### **Example 6: Direct proof**

Claim: If  $x^2(y^2 - 2y)$  is odd then both x and y are odd

**Proof:** suppose  $x^2(y^2 - 2y)$  is odd

#### **Example 6: Indirect proof**

Claim: If  $x^2(y^2 - 2y)$  is odd then both x and y are odd

**Proof:** Suppose that x is even or y is even

### **Example 6: Proof by Contradiction**

Claim: If  $x^2(y^2 - 2y)$  is odd then both x and y are odd

**Proof:** suppose, towards reaching a contradiction, a pair of integers x and y (not both odd) such that  $x^2(y^2 - 2y)$  is even

Let's Practice! (Example 7)

# Example 7

• Claim: If  $4n^3 + 8$  is odd then n is even

| <b>Direct Proof</b>                  | Indirect Proof                | Contradiction                                      | Counterexample                                             |
|--------------------------------------|-------------------------------|----------------------------------------------------|------------------------------------------------------------|
| <b>Start with:</b> $4n^3 + 8$ is odd | <b>Start with:</b> $n$ is odd | <b>Start with:</b> $n$ and $4n^3 + 8$ are both odd | Find an example of an odd integer $n$ such that $4n^3 + 8$ |
| End with: n is even                  | End with: $4n^3 + 8$ is even  | <b>End with:</b> something that's clearly wrong    | is odd                                                     |

- Do you think the statement is true or false?
- Which strategy seems easiest to you?

# **Example 7: Direct Proof**

Claim: If  $4n^3 + 8$  is odd then n is even

**Proof:** Suppose  $4n^3 + 8$  is odd

# **Example 7: Indirect proof**

Claim: If  $4n^3 + 8$  is odd then n is even

**Proof:** Suppose *n* is even

# **Example 7: Proof by Contradiction**

Claim: If  $4n^3 + 8$  is odd then n is even

**Proof:** suppose, towards reaching a contradiction, that we have an odd integer n such that  $4n^3 + 8$  is odd

# **Example 7: Counterexample**

Claim: If  $4n^3 + 8$  is even then n is even

**Proof:** let n = ???

#### **Vacuous Truth**

- If we have a claim of the form "If property P is true then property Q is true" and it is impossible for property P to be true, the entire statement is actually a true statement!
- We say that statement is "vacuously true"

Review: What is correctness?

#### **Review: Correctness**

Algorithm: A list of unambiguous instructions to solve a class of computational problems

An algorithm is correct for a given problem if it has:

- 1. Soundness: Running it never raises exceptions/errors
- 2. Termination: All loops terminate
- 3. Validity: The output meets the problem specification

## Review: Selection sort (1/6)

**Input:** Array A[1 ... n] of numbers

**Goal:** A permutation of *A* that is sorted in decreasing order

- 1. for i = 1, ..., n do
- 2. Let A[j] be the maximum element of A[i ... n].
- 3. Swap A[i] and A[j].
- 4. return A

## Review: Selection sort (2/6)

Q: Explain why "no exceptions" is true for this algorithm.

A: Two things:

- 1. Array access on i is within bounds because  $1 \le i \le n$  (line 1).
- 2. Maximum element A[j] exists because  $i \ge 1$ , so A[1 ... i] is nonempty.

Note: The concept of "error" in pseudocode is broader than code: whenever you say "let x be the ...," make sure it exists!

Q: "loops terminate"?

A: For-loops always terminate!

## Selection sort (3/6)

Q: What are some loop invariants that will help us show "meets specification"?

A: Here are some natural ideas:

- 1. After every iteration, array A is a permutation of the original.
- 2. After iteration i, subarray A[1 ... i] is sorted in decreasing order.

# Selection sort (4/6)

1. After every iteration, array A is a permutation of the original.

*Proof.* Before the loop starts: A is unchanged.

**After each iteration:** By the previous iteration, *A* starts out as a permutation of the original array.

Because we only modify A by swapping elements, it remains a permutation of the original at the end of this iteration.

# Selection sort (5/6)

2. After iteration i, subarray A[1 ... i] is sorted in decreasing order.

*Proof.* Before the loop starts:  $A[1 \dots 0]$  is empty.

**After each iteration:** By the previous iteration, A[1 ... i - 1] starts out sorted in decreasing order.

To show  $A[1 \dots i]$  ends up sorted, we need  $A[i-1] \ge A[i]$ .

(Then let's look at the code again to see what happens.)

# Selection sort (6/6)

**Input:** Array A[1 ... n] of numbers

Goal: A permutation of A that is sorted in decreasing order

- 1. for i = 1, ..., n do
- 2. Let A[j] be the maximum element of A[i ... n].
- 3. Swap A[i] and A[j].
- 4. return A

Stuck because this iteration doesn't give any information about A[i-1]!

Instead, strengthen the loop invariant to know more about A[i-1].

## Alternative invariant (1/3)

2. After iteration i, subarray A[1 ... i] each index j where  $1 \le j \le i$  contains the jth largest element of A.

*Proof.* Before the loop starts: A[1 ... 0] is empty.

After each iteration: By the previous iteration, each index of j of A[1 ... i - 1] contains the jth largest element of A.

We need to prove that index *i* contains the *i*th largest element of *A* after iteration *i*.

# Alternative invariant (2/3)

After each iteration: By the previous iteration, each index of j of A[1 ... i - 1] contains the jth largest element of A.

To prove that index i also contains the ith largest element of A after iteration i:

Lines 2 and 3 of the algorithm guarantee that index i will contain the largest element from A[i ... n]. This means that so long as that value is less than or equal to everything currently in the range A[1 ... i - 1] our invariant holds.

That statement is guaranteed by the previous iteration!

# Alternative Invariant (3/3)

What we know now: Every index of i of A[1 ... n] contains the ith largest element of A.

What we need to show: At the end of our algorithm, *A* is in decreasing order.

Final step: Show that if every index of i of A[1 ... n] contains the ith largest element of A, then A is in decreasing order.

## Final step

Claim: If every index of i of A[1 ... n] contains the ith largest element of A, then A is in decreasing order.

**Assumption**: every index of i of A[1 ... n] contains the ith largest element of A

**Conclusion**: *A* is in decreasing order

| <b>Direct Proof</b>                                          | Indirect Proof               | Contradiction                                                                                        | Counterexample                                                                                                                   |
|--------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Every index <i>i</i> contains he <i>i</i> th largest element | A is not in decreasing order | Every index <i>i</i> contains he <i>i</i> th largest element and <i>A</i> is not in decreasing order | Find a permutation of <i>A</i> that is not in decreasing order, but every index <i>i</i> contains he <i>i</i> th largest element |

## Indirect proof

Claim: If A is not in decreasing order then some index of i of A[1 ... n] does not contain the ith largest element of A

**Proof**: Suppose that A is not in decreasing order. This means that there is at least one pair of indices i + 1 and i such that A[i] < A[i + 1]. Select i so that this is the first such pair.

Since this is the first out-of-order pair, we can conclude that A[i] is smaller than or equal to all values in the range  $A[1 \dots i-1]$ , and so there are at least i-1 elements greater than or equal to A[i]. Since A[i] < A[i+1] as well, there are at least i elements greater than A[i], so A[i] is not the ith largest element of A.

#### Contradiction

Claim: If every index of i of A[1 ... n] contains the ith largest element of A, then A is in decreasing order.

**Proof**: We proceed by contradiction. Suppose we have a permutation of that is not in decreasing order, but every index i contains he ith largest element.

Because every index i contains the ith largest element, we know that there are not more than i-1 elements that are greater than A[i].

If A is not in decreasing order. This means that there is at least one pair of indices i + 1 and i such that A[i] < A[i + 1]. Select i so that this is the first such pair.

Since this is the first out-of-order pair, we can conclude that A[i] is smaller than or equal to all values in the range  $A[1 \dots i-1]$ , and so there are at least i elements greater than or equal to A[i]. Since A[i] < A[i+1] as well, there are at least i elements greater than A[i]. This contradicts the assumption that index i contains the ith largest element.

## **Proof writing tips**

- Writing proofs often involves failing. If some path seems like a dead end, try at different approach!
- Start by first guessing whether the statement is true or false.
- Next, write out what each proof strategy requires us to demonstrate. Then try to guess at which one seems easiest, start working on that one
- Repeatedly apply definitions of things to re-express statements. Write down all things you can
  think of that are true and relevant based on those statements
- If you get stuck, transition to another strategy. If you keep getting stuck, return to a previous one
- Proof techniques are not exclusive. You may find that you embed one strategy for one part of a larger proof
- If you're getting frustrated, come to office hours!

#### Final reminders

HW1 released at 11:30am!

I have OH now-12:30pm:

- Meet at front of classroom, we'll walk over together
- CSE (Allen) 214 if you're coming later

Nathan has online OH 12–1pm:

- Link on Canvas/course website
- https://washington.zoom.us/my/nathanbrunelle