CSE 417 25au Homework 1: Intro/Correctness
Released: Friday, September 26, 2025 @ 11:30am

First due by: Friday, October 3, 2025 @ 11:59pm

Last resubmissions by: Wednesday, October 15, 2025 @ 11:59pm

Instructions

For Problems 1 and 2, you have four options for submission:

« Film a video in which you explain your solution. See the Homework Guide
for more details. A whiteboard is not a good format for Problem 1. Consider
writing on paper or screen recording instead.

« Use LaTeX to type your solutions. A template is provided in the “Tasks” page
of the course website, if you like.

« Use Google Docs or Microsoft Word to type your solutions. If doing so, please
use the Equation Editor to ensure that any equations are legible and easy to read.

« Handwrite your solutions on paper or digitally. Please write neatly and if on
paper, scan in black/white mode, not grayscale.

We prefer either video or LaTeX, but accept any of the 4 options.
A few more reminders:

+ Submit all problems on Canvas, and programming assignment 1X.1 will redirect
to Gradescope. Each problem should have its own submission. Do not submit
one large file containing answers to several problems.

+ Suggested word counts/video length are rough guidelines. We won’t actually
count, but if your writing is verbose to the point of obscuring your main argument,
we may ask you resubmit more concisely.

« Review the collaboration policy in the syllabus. Collaboration is encouraged
but strict rules apply, and remember to cite your collaborators.

« If you don’t finish in time, we encourage you to be honest and just upload what
you have so far. Resubmission won’t cost you anything, and we can give you timely
feedback on your partial progress by submitting on time.

Happy problem solving!


https://courses.cs.washington.edu/courses/cse417/25au/guides.html#filming
https://courses.cs.washington.edu/courses/cse417/25au/syllabus.html#collaboration-with-other-students

Problem 1: Grading ChatGPT

The purpose of this problem is to dissuade you from overreliance on large language
models for logical reasoning, and to practice concepts about stable matchings.

We posed a question about stable matchings to ChatGPT, using “Think longer” mode,
which (as of September 2025) uses the GPT-5 Thinking Mini model. The question was:

Given a matching between proposers and receivers that matches p < r and
p’ < r', “swapping” these two matches means creating a new matching that
matches p <> r’ and p’ < r, but otherwise is identical to the original. Give
an instance of the stable matching problem with at least 3 people on each
side and a stable matching, such that after swapping any pair of matches,

the matching remains stable, or prove that such an instance cannot exist.

You can find the transcript of the conversation attached to the end of this PDF. Read the
conversation and identify all places where ChatGPT made mistakes, such as faulty or
unjustified logic. Point out precisely and explain each instance of such logical errors.
If there are false claims, also explain why the claim is false. (suggested 100-300 words
or 3-6 minutes video) (If choosing video, a whiteboard is not a good format for this
problem. Consider writing on paper or screen recording instead.)



Problem 1X: Grading ChatGPT (Extensions)

This is an extension problem that builds on the ideas of Problem 1. Pick one of the
following to complete:

1. The problem that we gave to ChatGPT is false, that is, with at least 3 people on
each side, there does not exist an instance of the stable matching problem and
a particular stable matching that always remains stable after swapping any two
matches.

This might be surprising, but in order to prove this, we only need to consider
stable matching instances with exactly 3 people on each side: If a larger instance
existed with the stable-after-swapping property, pick any 3 matched pairs and
delete everyone other than these 6 people from the preference lists. This results in
a new instance with 3 people on each side, and it has the stable-after-swapping
property, essentially because the original instance has the property. (That was a
proof sketch—you are encouraged to think through the details yourself, or come
discuss in office hours!)

In this problem, you will write a Java program that uses an exhaustive search
among all instances of stable matching with exactly 3 people on each side to prove
that no stable matching in any of these instances has the stable-after-swapping
property. The provided starter code will have some parts of this already, leaving
you to implement a couple of functions. It is available both on the course website
and Canvas. Submit your code in the assignment on Canvas (which redirects
to Gradescope) or Gradescope directly, where it will be autograded. Do not use
libraries beyond the standard Java API.

2. Review all 7 questions in this survey about university students’ perspectives on
ChatGPT, collected by Generation Lab in July 2025. Then synthesize your thoughts
on this survey with reflections on your own experience solving Problem 1 and join
the discussion on Canvas by responding to the following prompt, raising other
questions of your own choosing, or replying directly to other students’ responses.
(suggested 150-300 words)

Large language models (LLMs) can be used for exploration, editing, rea-
soning, and many other purposes. What are the benefits and drawbacks
of involving LLMs specifically in reasoning tasks, including short-term
and long-term effects? For you personally, in what contexts, if any,
would you refrain from using LLMs for reasoning? In what contexts, if
any, do the benefits outweigh the drawbacks?

You are not required to cite the survey or any other sources, but please support your
response with evidence, which may be anecdotal. Disagreeing with the course staff
or course policies will not be penalized. Resubmissions will not be available
for this option.


https://team.crunch.io/api/public/crunchbox/share/?data=%2F%2Fs.crunch.io%2Fwidget%2Findex.html%23%2Fds%2F5b8d6ab64a0648259f8d1c3aa7c75875%3Fviz%3DgroupedBarPlot%26cp%3Dpercent%26dp%3D0%26grp%3Dstack
https://team.crunch.io/api/public/crunchbox/share/?data=%2F%2Fs.crunch.io%2Fwidget%2Findex.html%23%2Fds%2F5b8d6ab64a0648259f8d1c3aa7c75875%3Fviz%3DgroupedBarPlot%26cp%3Dpercent%26dp%3D0%26grp%3Dstack

Problem 2: Business profit

The purpose of this problem is to practice complete proofs of simple algorithms, formally
verifying all aspects of an algorithm’s correctness.

You are given an array of integers A[1 ... n] representing the daily profit or loss of a
company. Your task is to determine if the company’s cumulative change in money was
ever positive (an overall profit), and if so, output the index of the first day where this
happened.

More formally, if A[1]+---+A[k] > Oand A[1]+---+A[j] < 0forall j < k—1, you should
output that the first profit occurred on day k. On the other hand, if A[1] +--- + A[j] <0
for all j, output “never”.

For example, if A = [—3,2,—1, 4, 2], you would say that the company first had an overall
profit at the end of day 4, since —3 + 2 — 1 + 4 = 2, which is positive, and this never
happened before day 4.

(This problem statement used 1-indexing. Feel free to use either 1-indexing or 0-indexing
in your solution, but make this clear. Keep n as the length of the array.)

1. Write a simple Java program that solves the above problem. Since this part is
mostly for your own benefit, we will not run your code. Paste the source code in
your written submission, or in the comments box if recording a video.

2. Translate your Java program into pseudocode intended for human reading, as if
you were describing the algorithm on a whiteboard to a friend who is currently
taking the equivalent of CSE 12X at another university that may not necessarily
use Java. Aim to efficiently communicate what you are doing and why, not the
particular details of Java syntax.

3. Provide a full proof of correctness for your algorithm, following the structure
covered in class. If you make a claim that is a loop invariant, make sure to say that
it is an invariant and briefly outline why it stays true. (target 100-300 words)

(Video submissions are suggested to take 4-8 minutes total.)



ChatGPT

Given a matching between proposers and receivers that
matches p <->rand p' <->r', "swapping" these two
matches means creating a new matching that matches p
<->r'and p' <->r, but otherwise is identical to the
original. Give an instance of the stable matching problem
with at least 3 people on each side and a stable
matching, such that after swapping any pair of matches,
the matching remains stable, or prove that such an
instance cannot exist.

e 2
Thought for 37s

Short answer: Such an instance exists.
Below | give a concrete 3 X 3 example and a short general proof that the construction

works for any n > 2 (so in particular for “at least 3").

Concrete 3 X 3 instance

Matching M = {(p1,71), (P2, 72), (3, 73)}. Preferences (strict):
Proposers:

® P1:T1>T9 T3
® Po2iT9 Ty > T3
®* P3 T3 >T1 >~ T2
Receivers:
° 71 :p2 > p3 > p1 (here p; is last)
° 719 :p3 > p1 > p2 (here py is last)
* T3:p1 > Py = p3 (here psis last)
Check: M is stable because no proposer prefers some other receiver to his matched

one (every proposer has his matched receiver first), so there cannot be a mutual

blocking pair.

Now pick any two matched pairs and swap them (for example swap (pl, 7'1) and

(pa, r2) to get (p1,72), (P2, 71), (P3, T3)). In the swapped matching any proposer who



was not involved still has his top choice, so he will not prefer anyone else. Any proposer
involved in the swap prefers his original partner to his new partner, but the
corresponding original receiver prefers her new partner over that proposer (because
every receiver ranks her matched proposer last), so the two cannot form a blocking pair.
Thus the swapped matching is stable. The same reasoning works for any choice of two

pairs.

General construction and proof (works for any n > 2)

Let proposers be pq, ..., p,, receivers ry, ..., r,, and take the matching M =
{(ps,m;) : i =1,...,n}. Make every proposer p; rank 7; as his top choice, and make
every receiver 7; rank p; as her worst choice (the rest of each agent's ordering may be

arbitrary, subject to strictness).

1. M is stable: no proposer wants to leave his matched receiver (each already has his
top choice), so there are no blocking pairs.

2. Fix any two indices 7 # j and swap those two matches to get M'. Any proposer Dk
with k ¢ {4, 7} still holds his top choice and thus will not participate in a blocking
pair. For p; (now matched to r;) the only receiver he could prefer to his current is 7;
, but r; prefers p; (her new partner) to p; (since p; was placed last), so (pi, ri) is
not a blocking pair; similarly for p;. No other pair can be mutually preferable. Hence
M’ is stable.

Therefore the requested instance exists (the concrete 3 X 3 example above), and the

simple general recipe gives infinitely many such instances for every n > 2.



