
Dynamic Programming
on Graphs

CSE 417 Winter 24

Lecture 15

New Resource on Assignments Page

For a few homeworks a “sample problem” with a “sample solution”

Not the actual problems on the homework, but a problem covering a
similar topic (e.g., a divide and conquer question, a dynamic
programming question, etc.).

Since we don’t have staff solutions (so you can resubmit!) we wanted to
give you something to refer to for ‘style’/length/etc.

Lecture examples are also good! But it’s sometimes nice to see a full
answer all in one spot.

Dynamic Programming

So far: DP on arrays and lists.

The end of yesterday’s slide deck has practice materials:

- Do LIS again, but from “left-to-right” instead of “right-to-left” (try
doing the same problem again to see if you understood it).

- Another problem (subset sum)

Today: our last DP day---DP on trees and graphs

DP on trees is very common; we’ll practice it today. DP on graphs is less
common; we’ll give you intuition why and tell you about a famous one.

Lots of slides we’re intentionally skipping

DP on Trees

Trees are recursive structures

A tree is a root node, with zero or more children

Each of which are roots of trees

Since DP is “smart recursion” (recursion where we save values)

Recursive functions/calculations are really common.

DP on Trees

Find the minimum vertex cover in a tree.

Give every vertex a weight, find the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every edge (𝑢, 𝑣):

𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

The weight of a vertex cover is just the sum of the weights of the
vertices in the set.

We want to find the minimum weight vertex cover.

Vertex Cover

Find the minimum vertex cover in
a tree.

Give every vertex a weight, find
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every

edge (𝑢, 𝑣): 𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

Vertex Cover

Find the minimum vertex cover in
a tree.

Give every vertex a weight, find
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every

edge (𝑢, 𝑣): 𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

A valid vertex cover! (just take everything)

Definitely not the minimum though.

Vertex Cover

Find the minimum vertex cover in
a tree.

Give every vertex a weight, find
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every

edge (𝑢, 𝑣): 𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

A better vertex cover – weight 18

Vertex Cover

Find the minimum vertex cover in
a tree.

Give every vertex a weight, find
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every

edge (𝑢, 𝑣): 𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

The minimum vertex cover: weight 17

Vertex Cover

Notice, the minimum weight
vertex cover might have both
endpoints of some edges

Even though only one of 1, 8 is
required on the edge between
them, they are both required for
other edges.

A set 𝑆 of vertices is a vertex cover if for every

edge (𝑢, 𝑣): 𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

Step 1: Formulate your problem recursively

Try top down and bottom up thinking.

Top down: For one particular “element” of the input, what do I need to
decide? What are all the possibilities?

Bottom up: What is a smaller version of the problem?

What information do we need to solve the problem recursively?

Vertex Cover – Recursively

Let’s try to write a recursive algorithm first.

What information do we need to decide if we include 𝑢?

If we don’t include 𝑢 then to be a valid vertex cover we need…

If we do include 𝑢 then to be a valid vertex cover we need…

Vertex Cover – Recursively

Let’s try to write a recursive algorithm first.

What information do we need to decide if we include 𝑢?

If we don’t include 𝑢 then to be a valid vertex cover we need…

to include all of 𝑢′𝑠 children, and vertex covers for each subtree

If we do include 𝑢 then to be a valid vertex cover we need…

just vertex covers in each subtree (whether children included or not)

Step 2: What do you need recursively

Write in English (not math. English.) what exactly the recursive call is
giving you.

I know this sounds silly. Every time I am trying to solve a DP problem
from scratch (or just remember how one worked) and can’t do it, it’s
because I haven’t written it down in English.

If you realize “I need an extra parameter” update the English description
with that extra parameter.

Recurrence

Let 𝑂𝑃𝑇(𝑣) be the weight of a minimum weight vertex cover for the
subtree rooted at 𝑣.

For this recurrence we are ignoring any edge from 𝑣 to a parent (if one
exists).

Write a recurrence for 𝑂𝑃𝑇()

Then figure out how to calculate it.

Hint: you need to change or add something.

Recurrence

𝑂𝑃𝑇(𝑣) – the weight of the minimum weight vertex cover for the tree
rooted at 𝑣 (whether or not 𝑣 is included).

𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑣) – the weight of the minimum weight vertex cover for the
tree rooted at 𝑣 where 𝑣 is included in the vertex cover.

𝑂𝑃𝑇 𝑣 = ቊmin{σ𝑢:𝑢 is a child of 𝑣 𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑢 , 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣 + σ𝑢:𝑢 is a child of 𝑣 𝑂𝑃𝑇(𝑢)} if 𝑣 is not a leaf

0 if 𝑣 is a leaf

𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑣 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣 + σ𝑢:𝑢 is a child of 𝑣 𝑂𝑃𝑇(𝑢)

Vertex Cover Dynamic Program

What memoization structure should we use?

What code should we write?

What’s the running time?

Vertex Cover Dynamic Program

What memoization structure should we use?

the tree itself!

What code should we write?

What’s the running time?

Vertex Cover

What order do we do the
calculation? 1

10

35

8

20

Vertex Cover Dynamic Program

What memoization structure should we use?

the tree itself!

What code should we write?

A post-order traversal (make recursive calls, then look up values in
children to do calculations)

What’s the running time?

Θ(𝑛)

DP on graphs

Rest of this slide deck

Dynamic Programming on Graphs

We’re building up to “Bellman-Ford” and “Floyd-Warshall”

Two very clever algorithms – we won’t ask you to be as clever.

But they’re standard library functions, so it’s good to know.

And deriving them together is good for practicing DP skills.

Want to understand: why is DP on graphs with cycles harder than DP on
trees?

Shortest Paths

Given: A directed graph and a vertex 𝑠
Find: The length of the shortest path from 𝑠 to 𝑡.

Shortest Path Problem

The length of a path is the sum of the edge weights.

Baseline: Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

In 373, we said the

running time was

𝑂(𝑚 log 𝑛 + 𝑛 log 𝑛)

Can be sped up to

𝑂 𝑚 + 𝑛 log 𝑛 by

inserting a

different heap

implementation.

A recurrence

Suppose you have a directed acyclic graph 𝐺.

How could you find distances from 𝑠?

What’s one step in this problem?

A recurrence

Suppose you have a directed acyclic graph 𝐺.

How could you find distances from 𝑠?

What’s one step in this problem?

Choosing the predecessor, i.e. “the last edge” on a path.

A recurrence

𝑑𝑖𝑠𝑡 𝑣 = ൝
0 if 𝑣 is the source

min
𝑢: 𝑢,𝑣 ∈𝐸

𝑑𝑖𝑠𝑡 𝑢 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 otherwise

Our memoization structure can be the graph itself.

What’s an evaluation order? (Remember we’re in a DAG!)

A recurrence

𝑑𝑖𝑠𝑡 𝑣 = ൝
0 if 𝑣 is the source

min
𝑢: 𝑢,𝑣 ∈𝐸

𝑑𝑖𝑠𝑡 𝑢 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 otherwise

Our memoization structure can be the graph itself.

What’s an evaluation order? (Remember we’re in a DAG!)

A topological sort! – we need to have distances for all incoming edges
calculated.

In a DAG

𝑑𝑖𝑠𝑡 𝑣 = ൝
0 if 𝑣 is the source

min
𝑢: 𝑢,𝑣 ∈𝐸

𝑑𝑖𝑠𝑡 𝑢 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 otherwise

8

3
6

3 2

1

5

What about cycles?

𝑑𝑖𝑠𝑡 𝑣 = ൝
0 if 𝑣 is the source

min
𝑢: 𝑢,𝑣 ∈𝐸

𝑑𝑖𝑠𝑡 𝑢 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 otherwise

8

3
6

3 2

4

1

5

Cycles

We need some way to “order” the paths.

I.e. we need to be sure we always have something to look up.

It doesn’t have to be the perfect distance necessarily…

As long as we’ll realize it and update later

And as long as we can fix it to the true distance eventually.

Ordering

Instead of 𝑑𝑖𝑠𝑡(𝑣), (the true distance) right from the start, we’ll let

𝑑𝑖𝑠𝑡(𝑣, 𝑖) to be the length of the shortest path from the source to 𝑣 that
uses at most 𝑖 edges.

That breaks ties – counting the number of edges required!

𝑑𝑖𝑠𝑡 𝑣, 𝑖 =

Distances

𝑑𝑖𝑠𝑡 𝑣, 2 = ∞ (can’t get there in 2 hops)

𝑑𝑖𝑠𝑡 𝑣, 3 = 14

𝑑𝑖𝑠𝑡 𝑣, 4 = 12

v

s

8

3
6

3 2

4

1

5

Ordering

Instead of 𝑑𝑖𝑠𝑡(𝑣), (the true distance) right from the start, we’ll let

𝑑𝑖𝑠𝑡(𝑣, 𝑖) to be the length of the shortest path from the source to 𝑣 that
uses at most 𝑖 edges.

That breaks ties – counting the number of edges required!

𝑑𝑖𝑠𝑡 𝑣, 𝑖 =

Ordering

Instead of 𝑑𝑖𝑠𝑡(𝑣), we want the

𝑑𝑖𝑠𝑡(𝑣, 𝑖) to be the length of the shortest path from the source to 𝑢 that
uses at most 𝑖 edges.

𝑑𝑖𝑠𝑡 𝑣, 𝑖 = ൞

0 if 𝑖 = 0 and 𝑣 is the source
∞ if 𝑖 = 0 and 𝑣 is not the source
min min

𝑢: 𝑢,𝑣 ∈𝐸
𝑑𝑖𝑠𝑡 𝑢, 𝑖 − 1 + 𝑤(𝑢, 𝑣) , 𝑑𝑖𝑠𝑡 𝑣, 𝑖 − 1 o/w

Sample calculation

Vertex\𝒊 0 1 2 3 4 5

S 0 0 0 0 0 0

A ∞ 3 3 3 3 3

B ∞ 8 8 8 8 8

C ∞ ∞ 9 9 9 9

D ∞ ∞ ∞ 11 11 11

V ∞ ∞ ∞ 14 12 12

c v
a

s

db8

3
6

3 2

4

1

5

Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to ??)

for(every vertex v) //what order?

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor 𝑑𝑖𝑠𝑡 𝑣, 𝑖 = ൞

0 if 𝑖 = 0 and 𝑣 is the source
∞ if 𝑖 = 0 and 𝑣 is not the source

min min
𝑢: 𝑢,𝑣 ∈𝐸

𝑑𝑖𝑠𝑡 𝑢, 𝑖 − 1 + 𝑤(𝑢, 𝑣) , 𝑑𝑖𝑠𝑡 𝑣, 𝑖 − 1

Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

for(every vertex v) //what order?

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

The shortest path will never need more than 𝑛 − 1 edges

(more than that and you’ve got a cycle)

Pseudocode

Initialize source.dist[0]=0, u.dist=∞ for others

for(i from 1 to n-1)

for(every vertex v) //what order?

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

Only ever need values from the last iteration

Order doesn’t matter!!

Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

for(every vertex v) //any order

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

Graphs don’t usually have easy access to their incoming

edges (just the outgoing ones)

Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

for(every vertex v) //any order

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

But the order doesn’t matter – as long as we check

every edge, the processing order is irrelevant.

So if we only have access to outgoing edges…

Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

set u.dist[i] to u.dist[i-1] for every u

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

set u.dist[i] to u.dist[i-1] for every u

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

We don’t really need all the different values…

Just the most recent value.

Pseudocode

Initialize source.dist=0, u.dist=∞ for others

for(i from 1 to n-1)

set u.dist[i] to u.dist[i-1] for every u

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist+weight(u,v)<v.dist)

v.dist=u.dist+weight(u,v)

endIf

endFor

endFor

endFor

We don’t really need all the different values…

Just the most recent value.

Pseudocode

Initialize source.dist=0, u.dist=∞ for others

for(i from 1 to n-1)

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist+weight(u,v)<v.dist)

v.dist=u.dist+weight(u,v)

endIf

endFor

endFor

endFor
We don’t really need all the different values…

Just the most recent value.

A Caution

We did change the code when we got rid of the indexing

You might have a mix of dist[i],dist[i+1],dist[i+2],… at the
same time.

That’s ok!

You’ll only “override” a value with a better one.

And you’ll eventually get to 𝑑𝑖𝑠𝑡(𝑢, 𝑛 − 1)

After iteration 𝑖, 𝑢 stores 𝑑𝑖𝑠𝑡(𝑢, 𝑘) for some 𝑘 ≥ 𝑖.

Exit early

If you made it through an entire iteration of the outermost loop and
don’t update any 𝑑𝑖𝑠𝑡()

Then you won’t do any more updates in the next iteration either. You
can exit early.

More ideas to save constant factors on Wikipedia (or the textbook)

Laundry List of shortest pairs (so far)

Algorithm Running Time Special Case Negative edges?

BFS 𝑂(𝑚 + 𝑛) ONLY unweighted

graphs

X

Simple DP 𝑂(𝑚 + 𝑛) ONLY for DAGs X

Dijkstra’s 𝑂(𝑚 + 𝑛 log 𝑛) X

Bellman-Ford 𝑂(𝑚𝑛) ???

Pseudocode

Initialize source.dist=0, u.dist=∞ for others

for(i from 1 to n-1)

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist+weight(u,v)<v.dist)

v.dist=u.dist+weight(u,v)

endIf

endFor

endFor

endFor

What happens if there’s a negative cycle?

Negative Cycles

The fastest way from 𝑎 to 𝑒

(i.e. least-weight walk) isn’t
defined!

No valid answer (−∞)

Negative edges, but only non-
negative cycles

Dijkstra’s might fail

But the shortest path IS defined.

There is an answer

Negative Edges

c e
a

db

6

3 2

-8

1

5

c e
a

db

6

3 2

-3

1

5

Negative Cycle

Vertex\𝒊 0 1 2 3 4 5 6

S 0 0 0 0 0

A ∞ 3 3 3 3

B ∞ 8 8 8 5

C ∞ ∞ 9 9 9

D ∞ ∞ ∞ 1 1

V ∞ ∞ ∞ 14 2

c v
a

s

db8

3
6

3 -8

4

1

5

Pollev.com/Robbie

Laundry List of shortest pairs (so far)

Algorithm Running Time Special Case only Negative edges?

BFS 𝑂(𝑚 + 𝑛) ONLY unweighted

graphs

X

Simple DP 𝑂(𝑚 + 𝑛) ONLY for DAGs X

Dijkstra’s 𝑂(𝑚 + 𝑛 log 𝑛) X

Bellman-Ford 𝑂(𝑚𝑛) Yes!

All Pairs Shortest Paths

All Pairs

For Dijkstra’s or Bellman-Ford we got the distances from the source to
every vertex.

What if we want the distances from every vertex to every other vertex?

Another Recurrence

𝑑𝑖𝑠𝑡 𝑣 = ൝
0 if 𝑣 is the source

min
𝑢: 𝑢,𝑣 ∈𝐸

𝑑𝑖𝑠𝑡 𝑢 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 otherwise

Another clever way to order paths.

Put the vertices in some (arbitrary) order 1,2, … , 𝑛

Let 𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑖) be the distance from 𝑢 to 𝑣 where the only intermediate
nodes are 1,2, … , 𝑖

Another Recurrence

Put the vertices in some (arbitrary) order 1,2, … , 𝑛

Let 𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑖) be the distance from 𝑢 to 𝑣 where the only intermediate
nodes are 1,2, … , 𝑖

dist 𝑢, 𝑣, 𝑖 =

𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 if 𝑖 = 0, (𝑢, 𝑣) exists
0 if 𝑖 = 0, 𝑢 = 𝑣
∞ if 𝑖 = 0, no edge (𝑢, 𝑣)

min dist 𝑢, 𝑖, 𝑖 − 1 + dist 𝑖, 𝑣, 𝑖 − 1 , dist(𝑢, 𝑣, 𝑖 − 1) otherwise

Pseudocode
dist[][] = new int[n-1][n-1]

for(int i=0; i<n; i++)

for(int j=0; j<n; j++)

dist[i][j] = edge(i,j) ? weight(i,j) : ∞

for(int i=0; i<n; i++)

dist[i][i] = 0

for every vertex 𝑟

for every vertex 𝑢

for every vertex 𝑣

if(dist[u][r] + dist[r][v] < dist[u][v])

dist[u][v]=dist[u][r] + dist[r][v]

“standard” form of the “Floyd-Warshall” algorithm. Similar to Bellman-Ford, you can

get rid of the last entry of the recurrence (only need 2D array, not 3D array).

Running Time

𝑂 𝑛3

How does that compare to Dijkstra’s?

Running Time

If you really want all-pairs…

Could run Dijkstra’s 𝑛 times…

𝑂(𝑚𝑛 log 𝑛 + 𝑛2 log 𝑛)

If 𝑚 ≈ 𝑛2 then Floyd-Warshall is faster!

Floyd-Warshall also handles negative weight edges.

Ask Robbie after how to detect them.

Takeaways

Some clever dynamic programming on graphs.

Which library to use (at least asymptotically)?

Need just one source?
Dijkstra’s if no negative edge weights.

Bellman-Ford if negative edges.

Need all sources?
Flord-Warshall if negative edges or 𝑚 ≈ 𝑛2

Repeated Dijkstra’s otherwise

These are all asymptotics! For any “real-world” problem prefer running
actual code to see which is faster.

