NP-
Complete

CSE 417
Algorithms and Complexity

Autumn 2024
Lecture 29
NP-Completeness and Beyond

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=XU9flIOrWmTaFM&tbnid=W8hogqFNBI2XiM:&ved=0CAUQjRw&url=http://quashieart.blogspot.com/2010/05/on-beyond-zebra.html&ei=EoE6UaLMHInIyAGKwoCQDw&bvm=bv.43287494,d.aWc&psig=AFQjCNGmkUZqRw9FnONlRkfysCIwmuKeTw&ust=1362874997471973

Announcements

« Exam practice problems on course homepage
* Final Exam: Monday, December 9, 8:30 AM

MonDec2 NP-Completeness
Wed-Deec4 NP-Completeness

Fri, Dec 6 NP-Completeness and Beyond
Mon, Dec 9 Final Exam

* This Is my last lecture

NP-Completeness Proofs

* Prove that problem X is NP-Complete
— Show that X is in NP (usually easy)
— Pick a known NP complete problem Y
— Show Y < X

SATISFIABILITY

0-1 INTEGER SATISFIABILITY WITH AT

CLTUE\ PROGRAMMING MOST 3 LITERAILS PER CLAUSE

NODE SET
COVER PACKING CHROMATIC NUMBER

FEEDBACK FEEDBACK DIRECTED SET
NODE SET ARC SET HAMILTON COVER

CIRCUIT COVERING /
3-DIMENSIONAL HITTING STEINER

: KNAPSACK
UNDIRECTED MATCHING TREE

HAMILTON
CIRCUIT

SEQUENCING PARTITION

FIGURE 1 - Complete Problems

‘W QYVHON

dAVH

Populating the NP-Completeness

Universe

Circuit Sat <p 3-SAT

3-SAT <; Independent Set
3-SAT < Vertex Cover
Independent Set <; Clique
3-SAT < Hamiltonian Circuit
Hamiltonian Circuit <, Traveling Salesman
3-SAT <. Integer Linear Programming
3-SAT <, Graph Coloring

3-SAT <; Subset Sum

Subset Sum <; Scheduling with Release times and
deadlines

NP-Complete

)

Coping with NP-Completeness

« Approximation Algorithms
* Exact solution via Branch and Bound
* Local Search

RIS N

| can’t find an efficient algorithm, but neither can all these famous people.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=wAlWsu-D4FGYaM&tbnid=VGbphMWdKd1QoM:&ved=0CAUQjRw&url=http://inf421.wordpress.com/2011/10/20/usefulness-of-p-and-np/&ei=eNs4UaqLKYXOrQHzoICYBA&bvm=bv.43287494,d.aWM&psig=AFQjCNEoWp8txWo2oF-xJqcpCNapYshSpg&ust=1362767052234834

Multiprocessor Scheduling

Unit execution tasks
Precedence graph
K-Processors

Polynomial time for
k=2
Open for k = constant

NP-complete is k is
part of the problem

Highest level first Is 2-Optimal

Choose k items on the highest level

Claim: number of rounds Is at least twice the
optimal.

Christofides TSP Algorithm

» Undirected graph satisfying triangle

Inequality
4
5 4
)
3
6

!—‘

Find MST

Add additional edges so that all
vertices have even degree
Build Eulerian Tour

3/2 Approximation

Branch and Bound

* Brute force search — tree of all possible
solutions

* Branch and bound — compute a lower
bound on all possible extensions

— Prune sub-trees that cannot be better than
optimal

11

Branch and Bound for TSP

« Enumerate all possible paths
« Lower bound, Current path cost plus MST of remaining points

 Euclidean TSP
— Points on the plane with Euclidean Distance
— Sample data set: State Capitals

Local Optimization

* Improve an optimization problem by local
Improvement
— Neighborhood structure on solutions
— Travelling Salesman 2-Opt (or K-Opt)
— Independent Set Local Replacement

13

What we don’'t know

* Pvs. NP

NP-Complete

14

If P = NP, Is there anything In

between

* Yes, Ladner [1975]

 Problems not known to be in P or NP
Complete

— Factorization
— Discrete LOg Solve gk = b over a finite group
— Graph Isomorphism

TN
A | % !

>4 ™~ /|

>4 ™ /
¥ 9 /
| bl b /
\\ /‘-i.\’ /‘lv‘%‘/ _7’- »
\ 1P / !
..\ ’, \L\ /J/ /»{/ y
\ /" \ .
“b/ ‘\I/ & e 9

15

Complexity Theory

Computational
requirements to
recognize languages

Models of il
Computation A

Resources
Hierarchies

[/[complexityzoo.net i

16

Time complexity

* P: (Deterministic) Polynomial Time
* NP: Non-deterministic Polynomial Time
« EXP: Exponential Time

17

Space Complexity

 Amount of Space (Exclusive of Input)

* L: Logspace, problems that can be solved
In O(log n) space for input of size n
— Related to Parallel Complexity

« PSPACE, problems that can be required
In a polynomial amount of space

18

Other types of computation

« Randomization

— Can you solve problems faster with a random
number generator?

* Quantum Computers

— Can you solve problems faster if you have
guantum bits which allow superposition?

* Probably yes: Shor’s Integer Factoring algorithm

19

So what Is beyond NP?

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=XU9flIOrWmTaFM&tbnid=W8hogqFNBI2XiM:&ved=0CAUQjRw&url=http://quashieart.blogspot.com/2010/05/on-beyond-zebra.html&ei=EoE6UaLMHInIyAGKwoCQDw&bvm=bv.43287494,d.aWc&psig=AFQjCNGmkUZqRw9FnONlRkfysCIwmuKeTw&ust=1362874997471973

NP vs. Co-NP

 Given a Boolean formula, is it true for
some choice of inputs

 Given a Boolean formula, is it true for all
choices of inputs

21

Problems beyond NP

 Exact TSP, Given a graph with edge
lengths and an integer K, does the
minimum tour have length K

 Minimum circuit, Given a circuit C, IS It
true that there Is no smaller circuit that
computes the same functiona C

22

Polynomial Hierarchy

e Level 1
—3X, D(X,), VX, D(X,)
e Level 2
— VX, 3X, ©(X4,X,), IX, VX, D(X,;,X,)
* Level 3
— VX, 3X,V X D(Xq, X, Xz), IX; ¥ X,3X5 DX, X0, Xs)

23

Polynomial Space

* Quantified Boolean Expressions
. HX].VXZHXS"'HXH-].VXH CI)(X].’XZ’XB . .Xn_lxn)
« Space bounded games

— Competitive Facility Location Problem
— N x N Chess

PSpace-

 Counting problems Complete

— The number of Hamiltonian Circuits

24

Even Harder Problems

public int[] RecolorSwap(int[] coloring) {
int k = maxColor(coloring);

for (int v = @; v < nVertices; v++) {
if (coloring[v] == k) {
int[] nbdColorCount = ColorCount(v, k, coloring);
List<Edge> edgesl = vertices[v].Edges;

foreach (Edge el in edgesl) {
int w = el.Head;
if (nbdColorCount[coloring[w]] == 1)
if (RecolorSwap(v, w, k, coloring))
break;

}
}

return coloring;

IS this code correct?

26

Halting Problem

* Given a program P that does not take any
Inputs, does P eventually exit?

27

Impossiblility of solving the
Halting Problem

Suppose Halt(P) returns true if P halts, and
false otherwise

bool G {

Consider the program G: ! (\'jvﬁ:,téca(zzﬂe) ;

}

else {

What is Halt(G)? return true;

}
}

28

Undecidable Problems

* The Halting Problem is undecidable
* Impossible problems are hard . . .

29

