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Announcements

« Exam practice problems on course homepage
* Final Exam: Monday, December 9, 8:30 AM

MonDec2 NP-Completeness
Wed-Deec4 NP-Completeness

Fri, Dec 6 NP-Completeness and Beyond
Mon, Dec 9 Final Exam

* This Is my last lecture



NP-Completeness Proofs

* Prove that problem X is NP-Complete
— Show that X is in NP (usually easy)
— Pick a known NP complete problem Y
— Show Y < X
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Populating the NP-Completeness

Universe

Circuit Sat <p 3-SAT

3-SAT <; Independent Set
3-SAT < Vertex Cover
Independent Set <; Clique
3-SAT < Hamiltonian Circuit
Hamiltonian Circuit <, Traveling Salesman
3-SAT <. Integer Linear Programming
3-SAT <, Graph Coloring

3-SAT <; Subset Sum

Subset Sum <; Scheduling with Release times and
deadlines

NP-Complete
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Coping with NP-Completeness

« Approximation Algorithms
* Exact solution via Branch and Bound
* Local Search

RIS N

| can’t find an efficient algorithm, but neither can all these famous people.
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Multiprocessor Scheduling

Unit execution tasks
Precedence graph
K-Processors

Polynomial time for
k=2
Open for k = constant

NP-complete is k is
part of the problem



Highest level first Is 2-Optimal

Choose k items on the highest level

Claim: number of rounds Is at least twice the
optimal.



Christofides TSP Algorithm

» Undirected graph satisfying triangle

Inequality
4
5 4
)
3
6
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Find MST

Add additional edges so that all
vertices have even degree
Build Eulerian Tour

3/2 Approximation







Branch and Bound

* Brute force search — tree of all possible
solutions

* Branch and bound — compute a lower
bound on all possible extensions

— Prune sub-trees that cannot be better than
optimal
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Branch and Bound for TSP

« Enumerate all possible paths
« Lower bound, Current path cost plus MST of remaining points

 Euclidean TSP
— Points on the plane with Euclidean Distance
— Sample data set: State Capitals




Local Optimization

* Improve an optimization problem by local
Improvement
— Neighborhood structure on solutions
— Travelling Salesman 2-Opt (or K-Opt)
— Independent Set Local Replacement
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What we don’'t know

* Pvs. NP

NP-Complete
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If P = NP, Is there anything In

between

* Yes, Ladner [1975]

 Problems not known to be in P or NP
Complete

— Factorization
— Discrete LOg Solve gk = b over a finite group
— Graph Isomorphism
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Complexity Theory

Computational
requirements to
recognize languages

Models of il
Computation A

Resources
Hierarchies

[/[complexityzoo.net i
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Time complexity

* P: (Deterministic) Polynomial Time
* NP: Non-deterministic Polynomial Time
« EXP: Exponential Time
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Space Complexity

 Amount of Space (Exclusive of Input)

* L: Logspace, problems that can be solved
In O(log n) space for input of size n
— Related to Parallel Complexity

« PSPACE, problems that can be required
In a polynomial amount of space
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Other types of computation

« Randomization

— Can you solve problems faster with a random
number generator?

* Quantum Computers

— Can you solve problems faster if you have
guantum bits which allow superposition?

* Probably yes: Shor’s Integer Factoring algorithm
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So what Is beyond NP?
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NP vs. Co-NP

 Given a Boolean formula, is it true for
some choice of inputs

 Given a Boolean formula, is it true for all
choices of inputs
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Problems beyond NP

 Exact TSP, Given a graph with edge
lengths and an integer K, does the
minimum tour have length K

 Minimum circuit, Given a circuit C, IS It
true that there Is no smaller circuit that
computes the same functiona C
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Polynomial Hierarchy

e Level 1
—3X, D(X,), VX, D(X,)
e Level 2
— VX, 3X, ©(X4,X,), IX, VX, D(X,;,X,)
* Level 3
— VX, 3X,V X D(Xq, X, Xz), IX; ¥ X,3X5 DX, X0, Xs)
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Polynomial Space

* Quantified Boolean Expressions
. HX].VXZHXS"'HXH-].VXH CI)(X].’XZ’XB . .Xn_lxn)
« Space bounded games

— Competitive Facility Location Problem
— N x N Chess

PSpace-

 Counting problems Complete

— The number of Hamiltonian Circuits
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Even Harder Problems

public int[] RecolorSwap(int[] coloring) {
int k = maxColor(coloring);

for (int v = @; v < nVertices; v++) {
if (coloring[v] == k) {
int[] nbdColorCount = ColorCount(v, k, coloring);
List<Edge> edgesl = vertices[v].Edges;

foreach (Edge el in edgesl) {
int w = el.Head;
if (nbdColorCount[coloring[w]] == 1)
if (RecolorSwap(v, w, k, coloring))
break;

}
}

return coloring;

IS this code correct?
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Halting Problem

* Given a program P that does not take any
Inputs, does P eventually exit?
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Impossiblility of solving the
Halting Problem

Suppose Halt(P) returns true if P halts, and
false otherwise

bool G {

Consider the program G: ! (\'jvﬁ:,téca(zzﬂe) ;

}

else {

What is Halt(G)? return true;

}
}
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Undecidable Problems

* The Halting Problem is undecidable
* Impossible problems are hard . . .
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