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CSE 417

Algorithms and Complexity

Autumn 2024

Lecture 27

NP-Completeness I

Announcements

• Homework 9

• Exam practice problems on  course homepage

• Final Exam:  Monday,  December 9, 8:30 AM

– One Hour Fifty Minutes

– Closed book,  no notes

Mon, Dec 2 NP-Completeness

Wed, Dec 4 NP-Completeness

Fri, Dec 6 Last Lecture: NP-Completeness and Beyond

Mon, Dec 9 Final Exam
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NP-Completeness

NP Completeness

http://inf421.files.wordpress.com/2011/10/gj1.gif
http://inf421.files.wordpress.com/2011/10/gj3.gif

Algorithms vs. Lower bounds

• Algorithmic Theory

– What we can compute

• I can solve problem X with resources R

– Proofs are almost always to give an algorithm 

that meets the resource bounds

• Lower bounds

– How do we show that something can’t be 

done?
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Theory of NP Completeness
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The Universe

NP-Complete

P

NP
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Polynomial Time 

• P: Class of problems that can be solved in 

polynomial time

– Corresponds with problems that can be 

solved efficiently in practice

– Right class to work with “theoretically”
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Decision Problems

• Theory developed in terms of yes/no 

problems

– Independent set

• Given a graph G and an integer K, does G have an 

independent set of size at least K

– Shortest Path

• Given a graph G with edge lengths, a start vertex 

s, and end vertex t, and an integer K, does the 

graph have a path between s and t of length at 

most K
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What is NP?

• Problems solvable in non-deterministic 

polynomial time . . . 

• Problems where “yes” instances have 

polynomial time checkable certificates
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Certificate examples

• Independent set of size K

– The Independent Set

• Satifisfiable formula

– Truth assignment to the variables

• Hamiltonian Circuit Problem

– A cycle including all of the vertices

• K-coloring a graph

– Assignment of colors to the vertices
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Certifiers and Certificates:  

3-Satisfiability

 

x1  x2  x3( )  x1  x2  x3( )  x1  x2  x4( )  x1   x3   x4( )

 

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t

SAT:  Does a given CNF formula have a satisfying formula

Certificate:  An assignment of truth values to the n boolean variables

Certifier: Check that each clause has at least one true literal,
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Certifiers and Certificates:  

Hamiltonian Cycle
HAM-CYCLE.  Given an undirected graph G = (V, E), does there exist a 

simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly once, 

and that there is an edge between each pair of adjacent nodes in the 

permutation.

instance s certificate t
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Polynomial time reductions

• Y is Polynomial Time Reducible to X

– Solve problem Y with a polynomial number of 

computation steps and a polynomial number 

of calls to a black box that solves X

– Notations:  Y <P X

• Usually, this is converting an input of Y to 

an input for X,  solving X,  and then 

converting the answer back
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Composability Lemma

• If X <P Y  and Y <P Z then X <P Z
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Lemmas

• Suppose Y <P X.  If X can be solved in 

polynomial time, then Y can be solved in 

polynomial time.

• Suppose Y <P X.  If Y cannot be solved in 

polynomial time, then X cannot be solved 

in polynomial time.
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NP-Completeness

• A problem X is NP-complete if 

– X is in NP

– For every Y in NP,  Y <P X

• X is a “hardest” problem in NP

• If X is NP-Complete, Z is in NP and X <P Z

– Then Z is NP-Complete
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Cook’s Theorem

• There is an NP Complete problem

– The Circuit Satisfiability Problem  

NP-Complete

P

NP
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Circuit SAT
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Find a satisfying assignment

Populating the NP-Completeness 

Universe
• Circuit Sat <P 3-SAT

• 3-SAT <P Independent Set

• 3-SAT <P Vertex Cover

• Independent Set <P Clique

• 3-SAT <P Hamiltonian Circuit

• Hamiltonian Circuit <P Traveling Salesman

• 3-SAT <P Integer Linear Programming

• 3-SAT <P Graph Coloring

• 3-SAT <P Subset Sum

• Subset Sum <P Scheduling with Release times and 
deadlines

NP-Complete

NP

P
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Graph Coloring

• NP-Complete

– Graph 3-coloring

• Polynomial

– Graph 2-Coloring
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Graph 4-Coloring

• Given a graph G,  can G be colored with 4 

colors?

• Prove 4-Coloring is NP Complete

• Proof:  3-Coloring <P 4-Coloring

• Show that you can 3-Color a graph if you 

have an algorithm to 4-Color a graph

22

3-Coloring <P 4-Coloring
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Garey and Johnson
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P vs. NP Question

NP-Complete

P

NP P        NP
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