Lecture25

CSE 417 Algorithms and Complexity

Lecture 25 Autumn 2024 Network Flow, Part 2

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Simple applications of Max Flow

50,779,2 50,730 L

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) ≥ 0
- Problem, assign flows f(e) to the edges such that:
 - $-0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to ∨ with capacity c f
 - G_R: edge e" from v to u with capacity f

Augmenting Path Algorithm

- Augmenting path in residual graph
 - Vertices v_1, v_2, \dots, v_k
 - $v_1 = s, v_k = t$

Possible to add b units of flow between v_j and v_{j+1} for j = 1 ... k-1

Adding flow along a path in the residual graph

- Let P be an s-t path in the residual graph with capacity b
- b units of flow can be added along P in the graph G
- Need to show:
 - new flow satisfies capacity constraints
 - new flow satisfies conservation constraints

Ford-Fulkerson Algorithm (1956)

while not done

Find an s-t path P in G_R with capacity b > 0

Add b units of flow along path P in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Flow Example I

Flow Example II

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S

Flow(S,T) ≤ Cap(S,T)

What is Cap(S,T) and Flow(S,T)

What is Cap(S,T) and Flow(S,T)

 $S=\{s, a, b, e, h\}, T=\{c, f, i, d, g, t\}$

$$Cap(S,T) = 95,$$

$$Flow(S,T) = 80 - 15 = 65$$

Minimum value cut

Find a minimum value cut

Find a minimum value cut

Find a minimum value cut

MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_R reachable from s with paths of positive capacity

Let S be the set of vertices in G_R reachable from s with paths of positive capacity

What can we say about the flows and capacity between u and v?

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Ford Fulkerson Runtime

- Cost per phase X number of phases
- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- 0(cm)

- Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

Performance

 The worst case performance of the Ford-Fulkerson algorithm is horrible

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow

Problem Reduction

- Couvert
- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A.

Problem Reduction Examples

 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Construct an equivalent minimization problem

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- · A collection of teachers
- A collection of courses

AK

 And a graph showing which teachers can teach which courses

417

RA	0		143
РВ			373
ME		\bigcirc	414
DG		\bigcirc	415

Converting Matching to Network Flow

Multi-source network flow

- Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_j
- Solve with Single source network flow

Resource Allocation: Assignment of reviewers

- A set of papers P₁, . . ., P_n
- A set of reviewers R₁, . . ., R_m
- Paper P_i requires A_i reviewers
- Reviewer R_i can review B_i papers
- For each reviewer R_j, there is a list of paper L_{j1}, . . . , L_{jk} that R_j is qualified to review