

CSE 417 Algorithms and Complexity

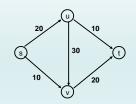
Autumn 2024 Lecture 24 Network Flow, Part 1 Announcements

- Homework 8, Due Wednesday, Nov 29
- Homework 9, Due Friday, Dec 6
- Final Exam,
 - Monday, December 9, 8:30-10:20 AM

2

Network Flow

Outline

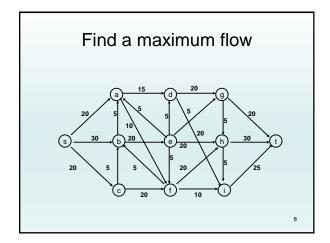

- · Network flow definitions
- Flow examples
- · Augmenting Paths
- Residual Graph
- · Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

4

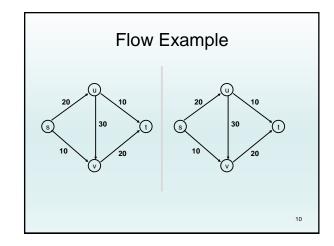
Network Flow Definitions

- Capacity
- · Source, Sink
- Capacity Condition
- · Conservation Condition
- Value of a flow

Flow Example



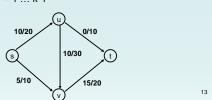
6

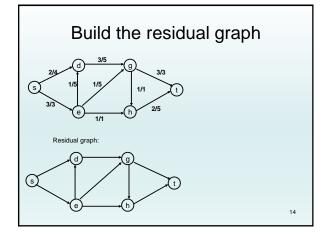

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) ≥ 0
- Problem, assign flows f(e) to the edges such that:
 - $-0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

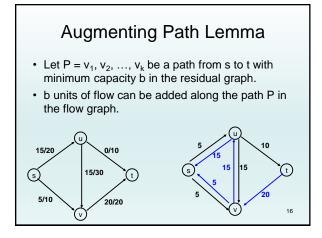
7

Residual Graph


- · Flow graph showing the remaining capacity
- Flow graph G, Residual Graph GR
 - G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c-f
 - $-G_R$: edge e" from v to u with capacity f


Flow assignment and the residual graph

11


Augmenting Path Algorithm

- Augmenting path
 - Vertices $v_1, v_2, ..., v_k$
 - $v_1 = s$, $v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j=1\dots k-1$

Proof

- · Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

_

17

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R

Find an s-t path P in G_R with capacity b>0

Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

18