
CSE 417:  Algorithms with 

Complexity

Lecture 23 – Autumn 2024

Shortest Paths Problem and 

Dynamic Programming
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Announcements

• Lecture plans

– Today:  Shortest Paths

– Friday-Wednesday:   Network Flow

– After Thanksgiving:   NP Completeness

• HW 8 Available
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Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths 
Algorithm

– O(mlog n) time, positive cost edges

• Bellman-Ford Algorithm

– O(mn) time for graphs which can have 
negative cost edges
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Dynamic Programming

• Express problem as an optimization

• Order subproblems so that results are 

computed in proper order
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Shortest Paths as DP

• Dists[s] = 0

• Dists[v] = minw [Dists[w] + cwv]

• How do we order the computation

• Directed Acyclic graph:  Topological Sort

• Dijkstra’s algorithm determines an order
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Lemma

• If a graph has no negative cost cycles, 

then the shortest paths are simple paths

• Shortest paths have at most n-1 edges
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Shortest paths with a given number 

of edges

• Find the shortest path from s to w with 

exactly k edges
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Express as a recurrence

• Compute distance from starting vertex s

• Optk(w) = minx [Optk-1(x) + cxw]

• Opt0(w) = 0 if w = s and infinity otherwise 
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Algorithm, Version 1

for each w

M[0, w] = infinity;

M[0, s] = 0;

for i = 1 to n-1

for each w

M[i, w] = minx(M[i-1,x] + cost[x,w]);
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Algorithm, Version 2

for each w

M[0, w] = infinity;

M[0, s] = 0;

for i = 1 to n-1

for each w

M[i, w] = min(M[i-1, w], minx(M[i-1,x] + cost[x,w]));
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Algorithm, Version 3

for each w

M[w] = infinity;

M[s] = 0;

for i = 1 to n-1

for each w

M[w] = min(M[w], minx(M[x] + cost[x,w]));
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Example: 
A B C

1 2

A B C A B C A B C

A B C
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Correctness Proof for Algorithm 3

• Key lemmas,  for all w:

– There exists a path of length M[w] from s to w

– At the end of iteration i,  M[w] ≤ M[i, w];
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Algorithm, Version 4

for each w

M[w] = infinity;

M[s] = 0;

for i = 1 to n-1

for each w

for each x 

if (M[w] > M[x] + cost[x,w])

P[w] = x;

M[w] = M[x] + cost[x,w] ;
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Theorem

v2 v3

v1 v4

If the pointer graph has a cycle, then 

the graph has a negative cost cycle

Proof:  See text.
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If the pointer graph has a cycle, then 

the graph has a negative cost cycle

• If P[w] = x then M[w] ≥ M[x] + cost(x,w)

– Equal when w is updated

– M[x] could be reduced after update

• Let v1, v2,…vk be a cycle in the pointer graph 

with (vk,v1) the last edge added

– Just before the update

• M[vj] ≥ M[vj+1] + cost(vj+1, vj) for j < k

• M[vk] > M[v1] + cost(v1, vk)

– Adding everything up

• 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1)

v2 v3

v1 v4
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Negative Cycles

• If the pointer graph has a cycle, then the 

graph has a negative cycle

• Therefore:  if the graph has no negative 

cycles, then the pointer graph has no 

negative cycles
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Finding negative cost cycles

• What if you want to find negative cost cycles?
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Finding the longest Path in a 

DAG
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What about finding Longest 

Paths in a directed graph
• Can we just change Min to Max?
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Foreign Exchange Arbitrage

USD EUR CAD

USD ------ 0.8 1.2

EUR 1.2 ------ 1.6

CAD 0.8 0.6 -----

USD

CADEUR

1.2 1.2

0.6

USD

CADEUR

0.8 0.8

1.6
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