CSE 417:. Algorithms with
Complexity

Lecture 23 — Autumn 2024

Shortest Paths Problem and
Dynamic Programming



Announcements

* Lecture plans
— Today: Shortest Paths
— Friday-Wednesday: Network Flow
— After Thanksgiving: NP Completeness

« HW 8 Avallable



Shortest Path Problem

 Dijkstra’s Single Source Shortest Paths
Algorithm

— O(mlog n) time, positive cost edges
* Bellman-Ford Algorithm

— O(mn) time for graphs which can have
negative cost edges



Dynamic Programming

* EXpress problem as an optimization

* Order subproblems so that results are
computed In proper order



Shortest Paths as DP

Dist [s] =0
Dist [v] = min, [DistJw] + c

wy]

How do we order the computation

Directed Acyclic graph: Topological Sort
Dijkstra’s algorithm determines an order



Lemma

 If a graph has no negative cost cycles,
then the shortest paths are simple paths

« Shortest paths have at most n-1 edges



Shortest paths with a given number
of edges

* Find the shortest path from s to w with
exactly k edges



EXpress as a recurrence

« Compute distance from starting vertex s

* Opt(w) = min, [Opty ;(X) + Cy,]
* Opty(w) =0 If w = s and Infinity otherwise



Algorithm, Version 1

for each w

MI[O, w] = Infinity;
MJO, s] = 0;
fori=1ton-1

for each w

M[i, w] = min,(M[i-1,Xx] + cost[x,w]);



Algorithm, Version 2

for each w

MI[O, w] = Infinity;
MJO, s] = 0;
fori=1ton-1

for each w

MI[i, w] = min(M[i-1, w], min,(M[i-1,x] + cost[x,w]));
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Algorithm, Version 3

for each w
M[w] = Infinity;
MJs] = O;
fori=1ton-1
for each w

M[w] = min(M[w], min (M[X] + cost[x,w]));
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Correctness Proof for Algorithm 3

« Key lemmas, for all w:
— There exists a path of length M[w] from s to w
— At the end of iteration i, M[w] < M[i, w];
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Algorithm, Version 4

for each w

M[w] = Infinity;
MIs] = O;
fori=1ton-1

for each w

for each x
If (M[w] > M[X] + cost[x,w])
Plw] = X;

M[w] = M[X] + cost[x,w] ;
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Theorem

If the pointer graph has a cycle, then
the graph has a negative cost cycle

Proof: See text.
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If the pointer graph has a cycle, then
the graph has a negative cost cycle

* If P[w] = x then M[w] = M[x] + cost(x,w)
— Equal when w is updated
— M[X] could be reduced after update
* Letvy,Vv,,...v, be a cycle in the pointer graph
with (v,,v,) the last edge added
— Just before the update

+ M[V] 2 M[Vj.q] + COSt(V,ug, V) for j < K VlDV“
* Mlvi] > M[v,] + cost(v,, v,)

— Adding everything up v, Vs
* 0> cost(v,,V,) + cost(v,,Vvs) + ... + cost(v,, V,)
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Negative Cycles

* If the pointer graph has a cycle, then the
graph has a negative cycle

* Therefore: If the graph has no negative
cycles, then the pointer graph has no
negative cycles
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Finding negative cost cycles

 What if you want to find negative cost cycles?
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Finding the longest Path In a
DAG
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What about finding Longest
Paths in a directed graph

« Can we just change Min to Max?
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Foreign Exchange Arbitrage

USD

/X

eurR ()

() cap

/\

eur ()

»( ) cAD

USD [EUR |CAD
USD |------ 0.8 |1.2
EUR |1.2 |------ 1.6
CAD |0.8 |0.6 |--—---
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