
CSE 417: Algorithms with

Complexity

Lecture 23 – Autumn 2024

Shortest Paths Problem and

Dynamic Programming

1

Announcements

• Lecture plans

– Today: Shortest Paths

– Friday-Wednesday: Network Flow

– After Thanksgiving: NP Completeness

• HW 8 Available

2

Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths
Algorithm

– O(mlog n) time, positive cost edges

• Bellman-Ford Algorithm

– O(mn) time for graphs which can have
negative cost edges

3

Dynamic Programming

• Express problem as an optimization

• Order subproblems so that results are

computed in proper order

4

Shortest Paths as DP

• Dists[s] = 0

• Dists[v] = minw [Dists[w] + cwv]

• How do we order the computation

• Directed Acyclic graph: Topological Sort

• Dijkstra’s algorithm determines an order

5

Lemma

• If a graph has no negative cost cycles,

then the shortest paths are simple paths

• Shortest paths have at most n-1 edges

6

Shortest paths with a given number

of edges

• Find the shortest path from s to w with

exactly k edges

7

Express as a recurrence

• Compute distance from starting vertex s

• Optk(w) = minx [Optk-1(x) + cxw]

• Opt0(w) = 0 if w = s and infinity otherwise

8

Algorithm, Version 1

for each w

M[0, w] = infinity;

M[0, s] = 0;

for i = 1 to n-1

for each w

M[i, w] = minx(M[i-1,x] + cost[x,w]);

9

Algorithm, Version 2

for each w

M[0, w] = infinity;

M[0, s] = 0;

for i = 1 to n-1

for each w

M[i, w] = min(M[i-1, w], minx(M[i-1,x] + cost[x,w]));

10

Algorithm, Version 3

for each w

M[w] = infinity;

M[s] = 0;

for i = 1 to n-1

for each w

M[w] = min(M[w], minx(M[x] + cost[x,w]));

11

Example:
A B C

1 2

A B C A B C A B C

A B C

12

Correctness Proof for Algorithm 3

• Key lemmas, for all w:

– There exists a path of length M[w] from s to w

– At the end of iteration i, M[w] ≤ M[i, w];

13

Algorithm, Version 4

for each w

M[w] = infinity;

M[s] = 0;

for i = 1 to n-1

for each w

for each x

if (M[w] > M[x] + cost[x,w])

P[w] = x;

M[w] = M[x] + cost[x,w] ;
14

Theorem

v2 v3

v1 v4

If the pointer graph has a cycle, then

the graph has a negative cost cycle

Proof: See text.
15

If the pointer graph has a cycle, then

the graph has a negative cost cycle

• If P[w] = x then M[w] ≥ M[x] + cost(x,w)

– Equal when w is updated

– M[x] could be reduced after update

• Let v1, v2,…vk be a cycle in the pointer graph

with (vk,v1) the last edge added

– Just before the update

• M[vj] ≥ M[vj+1] + cost(vj+1, vj) for j < k

• M[vk] > M[v1] + cost(v1, vk)

– Adding everything up

• 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1)

v2 v3

v1 v4

16

Negative Cycles

• If the pointer graph has a cycle, then the

graph has a negative cycle

• Therefore: if the graph has no negative

cycles, then the pointer graph has no

negative cycles

17

Finding negative cost cycles

• What if you want to find negative cost cycles?

2
2

2

3

2

-2

5

4

2

-3
61

-5

2

18

Finding the longest Path in a

DAG

2

8

7

3

11

2

5

7

8

6

77

3

14

19

What about finding Longest

Paths in a directed graph
• Can we just change Min to Max?

20

Foreign Exchange Arbitrage

USD EUR CAD

USD ------ 0.8 1.2

EUR 1.2 ------ 1.6

CAD 0.8 0.6 -----

USD

CADEUR

1.2 1.2

0.6

USD

CADEUR

0.8 0.8

1.6
21

