
CSE 417 Algorithms

Lecture 21,  Autumn 2023

Dynamic Programming

Subset Sum etc.  

1



Announcements

• Homework Deadlines
– HW 7: Due Wednesday, Nov 20

– HW 8: Due Wednesday, Nov 27

– HW 9: Due Friday, Dec 6

• Dynamic Programming Reading: 
– 6.1-6.2,  Weighted Interval Scheduling, Path Counting, 

Paragraph Layout

– 6.4 Knapsack and Subset Sum 

– 6.6 String Alignment
• 6.7* String Alignment in linear space

– 6.8 Shortest Paths (again)

– 6.9 Negative cost cycles 
• How to make an infinite amount of money

2



What is the largest sum you can make of the 

following integers that is ≤ 20

3

{4, 5, 8, 10, 13, 14, 17, 18, 21, 23, 28, 31, 37} 



What is the largest sum you can make of the 

following integers that is ≤ 2000

4

{78, 101, 122, 133, 137, 158, 189, 201, 220, 

222, 267, 271, 281, 289, 296, 297, 301, 311, 

315, 321, 322, 341, 349, 353, 361, 385, 396 } 



Subset Sum Problem

• Given integers {w1,…,wn} and an integer K

• Find a subset that is as large as possible that does not 

exceed K

• Dynamic Programming:  Express as an optimization over 

sub-problems.

• New idea: Represent at a sub problems depending on K 

and n

– Two dimensional grid

5



Subset Sum Optimization

Opt[ j, K ] the largest subset of {w1, …, wj} that sums 

to at most K

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj)

6



Subset Sum Grid

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{2, 4, 7, 10}

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj)

7



Subset Sum Grid

4 0 2 2 4 4 6 7 7 9 10 11 12 13 14 14 16 17

3 0 2 2 4 4 6 7 7 9 9 11 11 13 13 13 13 13

2 0 2 2 4 4 6 6 6 6 6 6 6 6 6 6 6 6

1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{2, 4, 7, 10}

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj)

8



Subset Sum Code

for j = 1 to n

for k = 1 to W

Opt[j, k] = max(Opt[j-1, k], Opt[j-1, k-wj] + wj)

9



Knapsack Problem

• Items have weights and values

• The problem is to maximize total value subject to 
a bound on weght

• Items {I1, I2, … In}
– Weights {w1, w2, …,wn}

– Values {v1, v2, …, vn}

– Bound K

• Find set S of indices to:

– Maximize SieSvi such that SieSwi ≤ K

10



Knapsack Recurrence

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj)

Subset Sum Recurrence:

Knapsack Recurrence:

11



Knapsack Grid

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weights {2, 4, 7, 10}  Values: {3, 5, 9, 16}

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + vj)

12



Knapsack Grid

4 0 3 3 5 5 8 9 9 12 16 16 18 18 21 21 24 25

3 0 3 3 5 5 8 9 9 12 12 14 14 17 17 17 17 17

2 0 3 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8

1 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weights {2, 4, 7, 10}  Values: {3, 5, 9, 16}

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + vj)

13



Alternate approach for Subset 

Sum
• Alternate formulation of Subset Sum dynamic 

programming algorithm
– Sum[i, K] = true if there is a subset of {w1,…wi} that 

sums to exactly K,  false otherwise

– Sum [i, K] = Sum [i -1, K] OR Sum[i - 1, K - wi]

– Sum [0, 0] = true;  Sum[i, 0] = false for i ≠ 0

• To allow for negative numbers, we need to fill in 
the array between Kmin and Kmax

14



Run time for Subset Sum

• With n items and target sum K, the run 

time is O(nK)

• If K is 1,000,000,000,000,000,000,000,000 

this is very slow

• Alternate brute force algorithm:  examine 

all subsets: O(n2n)

• Point of confusion: Subset sum is NP 

Complete

15



Two dimensional dynamic 

programming

4 0

3 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj)

Subset sum and knapsack

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + vj)

16



Reducing dimensions

• Computing values in the array only 

requires the previous row

– Easy to reduce this to just tracking two rows

– And sometimes can be implemented in a 

single row

• Space savings is significant in practice

• Reconstructing values is harder

17


