CSE 417 Algorithms

Lecture 21, Autumn 2023

Dynamic Programming

Subset Sum etc.

Announcements

- Homework Deadlines
 - HW 7: Due Wednesday, Nov 20
 - HW 8: Due Wednesday, Nov 27
 - HW 9: Due Friday, Dec 6
- Dynamic Programming Reading:
 - 6.1-6.2, Weighted Interval Scheduling, Path Counting, Paragraph Layout
 - 6.4 Knapsack and Subset Sum
 - 6.6 String Alignment
 - 6.7* String Alignment in linear space
 - 6.8 Shortest Paths (again)
 - 6.9 Negative cost cycles
 - How to make an infinite amount of money

What is the largest sum you can make of the following integers that is ≤ 20

{4, 5, 8, 10, 13, 14, 17, 18, 21, 23, 28, 31, 37}

What is the largest sum you can make of the following integers that is ≤ 2000

```
{78, 101, 122, 133, 137, 158, 189, 201, 220, 222, 267, 271, 281, 289, 296, 297, 301, 311, 315, 321, 322, 341, 349, 353, 361, 385, 396 }
```

Subset Sum Problem

- Given integers {w₁,...,w_n} and an integer K
- Find a subset that is as large as possible that does not exceed K
- Dynamic Programming: Express as an optimization over sub-problems.
- New idea: Represent at a sub problems depending on K and n
 - Two dimensional grid

Subset Sum Optimization

Opt[j, K] the largest subset of {w₁, ..., w_j} that sums to at most K

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)

Subset Sum Grid

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)

4																	
3																	
2																	
1																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Subset Sum Grid

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)

4	0	2	2	4	4	6	7	7	9	10	11	12	13	14	14	16	17
3	0	2	2	4	4	6	7	7	9	9	11	11	13	13	13	13	13
2	0	2	2	4	4	6	6	6	6	6	6	6	6	6	6	6	6
1	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Subset Sum Code

```
for j = 1 to n

for k = 1 to W

Opt[j, k] = max(Opt[j-1, k], Opt[j-1, k-w<sub>j</sub>] + w<sub>j</sub>)
```

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items {I₁, I₂, ... I_n}
 - Weights $\{w_1, w_2, ..., w_n\}$
 - Values {v₁, v₂, ..., v_n}
 - Bound K
- Find set S of indices to:
 - Maximize $\sum_{i \in S} v_i$ such that $\sum_{i \in S} w_i \le K$

Knapsack Recurrence

Subset Sum Recurrence:

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K -
$$w_j$$
] + w_j)

Knapsack Recurrence:

Knapsack Grid

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_i] + v_i)

4																	
3																	
2																	
1																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

Knapsack Grid

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + v_j)

4	0	3	3	5	5	8	9	9	12	16	16	18	18	21	21	24	25
3	0	3	3	5	5	8	9	9	12	12	14	14	17	17	17	17	17
2	0	3	3	5	5	8	8	8	8	8	8	8	8	8	8	8	8
1	0	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

Alternate approach for Subset Sum

- Alternate formulation of Subset Sum dynamic programming algorithm
 - Sum[i, K] = true if there is a subset of $\{w_1, ..., w_i\}$ that sums to exactly K, false otherwise
 - Sum [i, K] = Sum [i -1, K] **OR** Sum[i 1, K w_i]
 - Sum [0, 0] = true; Sum[i, 0] = false for $i \neq 0$

• To allow for negative numbers, we need to fill in the array between K_{min} and K_{max}

Run time for Subset Sum

- With n items and target sum K, the run time is O(nK)
- If K is 1,000,000,000,000,000,000,000
 this is very slow
- Alternate brute force algorithm: examine all subsets: O(n2ⁿ)
- Point of confusion: Subset sum is NP Complete

Two dimensional dynamic programming

Subset sum and knapsack

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K -
$$w_i$$
] + w_i)

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K -
$$w_j$$
] + v_j)

4	0																
3	0																
2	0																
1	0																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reducing dimensions

- Computing values in the array only requires the previous row
 - Easy to reduce this to just tracking two rows
 - And sometimes can be implemented in a single row
- Space savings is significant in practice
- Reconstructing values is harder