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Lecture 20,  Autumn 2024

Dynamic Programming, Part II  
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Announcements

• Dynamic Programming Reading: 

– 6.1-6.2,  Weighted Interval Scheduling

– 6.4 Knapsack and Subset Sum 

– 6.6 String Alignment

• 6.7* String Alignment in linear space

– 6.8 Shortest Paths (again)

– 6.9 Negative cost cycles 

• How to make an infinite amount of money
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Key Ideas for Dynamic 

Programming
• Give a recursive solution for the problem 

in terms of optimizing an objective function

• Order sub-problems to avoid duplicate 

computation

• Determine the elements that form the 

solution
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Weighted Interval Scheduling

• Given a collection of intervals I1,…,In with 

weights w1,…,wn, choose a maximum 

weight set of non-overlapping intervals

Intervals sorted by end time
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2 P[I1] = 0

P[I2] = 0

P[I3] = 1

P[I4] = 2

P[I6] = 4

P[I5] = 1

P[I7] = 3



Recursive Solution

Express the solution to a problem of size n in terms 
of solutions to problems of size k, where k < n

Intervals sorted by end time
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Optimality Condition

• Opt[ j ] is the maximum weight 

independent set of intervals I1, I2, . . ., Ij

• Opt[ j ] = max( Opt[ j – 1], wj + Opt[ p[ j ] ])

– Where p[ j ] is the index of the last interval 

which finishes before Ij starts

• Convert to iterative algorithm to compute: 

Opt[1], Opt[2], Opt[3],…, Opt[n-1], Opt[n]

Intervals sorted by end time
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Iterative Algorithm

MaxValue(n){

int[ ] M = new int[n+1];

M[0] = 0;

for (int i = 1; i <= n; i++){

M[ j ] = max(M[j-1], wj + M[p[ j ]]);

}

return M[n];

}
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How many different ways can I 

walk to work?
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Only taking “efficient” routes

Make the problem discrete

Directed Graph model: 

Intersections and streets

Assume the graph is a 

directed acyclic graph (DAG)

Problem: compute the number 

of paths from vertex h to 

vertex w



P[v]: Number of paths from v to v0
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How do you compute 

P[v] if you know P[x], 

P[y], and P[z]?



Recursive Algorithm
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PC(v){

if (v == v0)

return 1;

count = 0;

foreach (w in N+(v)){

count = count + PC(w);

}

return count;

}
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Ordering the vertices
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How do you order the vertices of a DAG 

such that if there is an edge from v to w,  

w comes before v in the ordering?



Path Counting
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CountPaths(G, P){

P[0] = 1;

for (i = 1 to n-1){

P[i] = 0;

foreach (w in N+(vi)){

P[i] = P[i] + P[w];    

}

}

G=(V,E) is an n node directed acyclic graph,  with vn-1, vn-2, . . ., 

v1, v0 a topological order of the vertices.  An array is computed 

giving the number of paths from each vertex to v0.



Typesetting

• Layout text on a page to optimize 

readability and aesthetic measures

• Skilled profession replaced by computing

• Goal – give text a uniform appearance 

which is primarily done by choosing line 

breaks to balance white space

– Interword spacing can stretch or shrink

– Hyphenation is sometimes available
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Optimal line breaking
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Optimal Line Breaking

• Words have length wi, line length L

• Penalty related to white space or overflow 

of the line

– Quadratic measure often used

• Pen(i, j):  Penalty for putting wi, wi+1,…,wj

on the same line

• Opt[m]: minimum penalty for ending a line 

with wm
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The quick brown 

fox jumped  over 

the    lazy     dog.

The  quick brown 

fox           jumped     

over the lazy dog.

Pen(“The quick brown”) = 1

Pen(“fox jumped over”)  = 2

Pen(“fox jumped”) = 8

Pen(“the lazy dog”) = 6

Pen(“over the lazy dog.”) = 4

Pen(i, j):  Penalty for putting wi, wi+1,…,wj on the same line



Optimal Line Breaking

Opt[m] = min i { Opt [ i ] + Pen(i+1,m)} for 0 < i < m

Optimal score for ending a line with wm

For words w1, w2, . . . , wn,   we compute Opt[n] to 

find the optimal layout 17



Optimal Line Breaking

18

Opt[0] = 0;

for m = 1 to n {

Find i that minimizes Opt [ i ] + Pen(i+1,m);

Opt[m] = Opt [ i ] + Pen(i+1,m);

Pred[m] = i;

}


