
CSE 417 Algorithms and

Complexity

Lecture 20, Autumn 2024

Dynamic Programming, Part II

1

Announcements

• Dynamic Programming Reading:

– 6.1-6.2, Weighted Interval Scheduling

– 6.4 Knapsack and Subset Sum

– 6.6 String Alignment

• 6.7* String Alignment in linear space

– 6.8 Shortest Paths (again)

– 6.9 Negative cost cycles

• How to make an infinite amount of money

2

Key Ideas for Dynamic

Programming
• Give a recursive solution for the problem

in terms of optimizing an objective function

• Order sub-problems to avoid duplicate

computation

• Determine the elements that form the

solution

3

Weighted Interval Scheduling

• Given a collection of intervals I1,…,In with

weights w1,…,wn, choose a maximum

weight set of non-overlapping intervals

Intervals sorted by end time

4

7

4

6

7

6

2 P[I1] = 0

P[I2] = 0

P[I3] = 1

P[I4] = 2

P[I6] = 4

P[I5] = 1

P[I7] = 3

Recursive Solution

Express the solution to a problem of size n in terms
of solutions to problems of size k, where k < n

Intervals sorted by end time

4

7

4

6

7

6

2

Optimality Condition

• Opt[j] is the maximum weight

independent set of intervals I1, I2, . . ., Ij

• Opt[j] = max(Opt[j – 1], wj + Opt[p[j]])

– Where p[j] is the index of the last interval

which finishes before Ij starts

• Convert to iterative algorithm to compute:

Opt[1], Opt[2], Opt[3],…, Opt[n-1], Opt[n]

Intervals sorted by end time

6

Iterative Algorithm

MaxValue(n){

int[] M = new int[n+1];

M[0] = 0;

for (int i = 1; i <= n; i++){

M[j] = max(M[j-1], wj + M[p[j]]);

}

return M[n];

}

7

How many different ways can I

walk to work?

8

Only taking “efficient” routes

Make the problem discrete

Directed Graph model:

Intersections and streets

Assume the graph is a

directed acyclic graph (DAG)

Problem: compute the number

of paths from vertex h to

vertex w

P[v]: Number of paths from v to v0

9

x

v

y z

How do you compute

P[v] if you know P[x],

P[y], and P[z]?

Recursive Algorithm

10

PC(v){

if (v == v0)

return 1;

count = 0;

foreach (w in N+(v)){

count = count + PC(w);

}

return count;

}

v6

v5
v4 v3

v1

v2

v0

Ordering the vertices

11

How do you order the vertices of a DAG

such that if there is an edge from v to w,

w comes before v in the ordering?

Path Counting

12

CountPaths(G, P){

P[0] = 1;

for (i = 1 to n-1){

P[i] = 0;

foreach (w in N+(vi)){

P[i] = P[i] + P[w];

}

}

G=(V,E) is an n node directed acyclic graph, with vn-1, vn-2, . . .,

v1, v0 a topological order of the vertices. An array is computed

giving the number of paths from each vertex to v0.

Typesetting

• Layout text on a page to optimize

readability and aesthetic measures

• Skilled profession replaced by computing

• Goal – give text a uniform appearance

which is primarily done by choosing line

breaks to balance white space

– Interword spacing can stretch or shrink

– Hyphenation is sometimes available

13

Optimal line breaking

14

Optimal Line Breaking

• Words have length wi, line length L

• Penalty related to white space or overflow

of the line

– Quadratic measure often used

• Pen(i, j): Penalty for putting wi, wi+1,…,wj

on the same line

• Opt[m]: minimum penalty for ending a line

with wm

15

16

The quick brown

fox jumped over

the lazy dog.

The quick brown

fox jumped

over the lazy dog.

Pen(“The quick brown”) = 1

Pen(“fox jumped over”) = 2

Pen(“fox jumped”) = 8

Pen(“the lazy dog”) = 6

Pen(“over the lazy dog.”) = 4

Pen(i, j): Penalty for putting wi, wi+1,…,wj on the same line

Optimal Line Breaking

Opt[m] = min i { Opt [i] + Pen(i+1,m)} for 0 < i < m

Optimal score for ending a line with wm

For words w1, w2, . . . , wn, we compute Opt[n] to

find the optimal layout 17

Optimal Line Breaking

18

Opt[0] = 0;

for m = 1 to n {

Find i that minimizes Opt [i] + Pen(i+1,m);

Opt[m] = Opt [i] + Pen(i+1,m);

Pred[m] = i;

}

