11/6/24, 2:02 PM Lecture18

Lecture18

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 1/20



11/6/24, 2:02 PM Lecture18

Announcements

* No class on Monday

* Schedule S
— Lectures 19-23: Dynamic Programming \\,W‘\d \“
— Lectures 24-26: Network Flow (

G St
— Lectures 27-29: NP-Completeness

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 2/20



11/6/24, 2:02 PM Lecture18

Divide and Conquer

* D&C Algorithms
— MergeSort and QuickSort
— O(n?28%) Matrix Multiplication (Strassen)
— Integer Multiplication
— O(n) Median Algorithm
* Today’s Algorithms — combining solutions

— Counting Inversions
— Closest Pair (in 2D)

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 3/20



11/6/24, 2:02 PM Lecture18

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 4/20



11/6/24, 2:02 PM

Lecture18

Inversion Problem

leta,, ... a,beapermutationofl..n

(a, aJ] is an inversion if i < j
w

4617325 S RS SR
P Ry

'2 rm,UMh—-

and a; > a,

Problem: given a permutation, count the number of
Inversions

This can be done easily in O(n?) time

— Can we do better?

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html

5/20



11/6/24, 2:02 PM Lecture18

Application

* Counting inversions can be use to measure
how close ranked preferences are

— People rank 20 movies, based on their rankings
you cluster people who like that same type of
movie

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 6/20



11/6/24, 2:02 PM

= AN :Z'T(*{!r) o
Counting Inversions

11

12

15

9

16

13

10

14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html

7120



11/6/24, 2:02 PM Lecture18

Count the Inversions

(8) <,
® ol
11 [12]4 [1 [7 [2 [3 [15 o [5 168 [6 [13]10 14
(1)

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 8/20



11/6/24, 2:02 PM

Lecture18

Problem — how do we count inversions between

* Solution — Count inversions while merging

sub problems in O(n) time?

L 1
1 12 |3 |4 |7 |11 )12 |15 5 |6 9 [10 (13 |14 |16
L
(4
Te[3[ y[ETe[3[l]U]

A

Standard merge algorithm — add to inversion count 3 r

when an element is moved from the upper array to the

solution

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html

9/20



11/6/24, 2:02 PM Lecture18

Use the merge algorithm to count

Inversions
1 4 11 [12 2 7, T 7 S 2.
| [ 2|4 | 1
5 18 |9 |16 5] 10 113 | 14

Indicate the number of inversions for each
element detected when merging

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 10/20



11/6/24, 2:02 PM

* Counting inversions between two sorted lists

Lecture18

Inversions

— O(1) per element to count inversions

1

1

X

¥ ¥

zZ

Z

Z

Z

2

pid

bd

[

* Algorithm summary
— Satisfies the “Standard recurrence”

— T(n) =

2T(n/2) +cn

Ll
e

O(_h. 1963

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html

)

11/20



11/6/24, 2:02 PM Lecture18

Closest Pair Problem (2D)

* Given a set of points find the pair of points p,
g that minimizes dist(p, q)

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 12/20



11/6/24, 2:02 PM

Lecture18

Divide and conquer

* If we solve the problem on two subsets, does

it help? (Separate by

5

\-_1
O

median x coordinate)

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html

13/20



11/6/24, 2:02 PM Lecture18

Packing Lemma

Suppose that the minimum distance between
points Is at least 5, what Is the maximum number of
points that can be packed in a ball of radius &7

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 14/20



11/6/24, 2:02 PM Lecture18

Combining Solutions

* Suppose the minimum separation from the
sub problems is o

* In looking for cross set closest pairs, we only

need to consider points with o of the
boundary

* How many cross border interactions do we
need to test?

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 15/20



11/6/24, 2:02 PM Lecture18

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 16/20



11/6/24, 2:02 PM Lecture18

Details

* Preprocessing: sort points by y

* Merge step
— Select points in boundary zone

— For each point in the boundary

* Find highest point on the other side that is at most o
above

* Find lowest point on the other side that is at most o
below

* Compare with the points in this interval (there are at
most 6)

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html

17/20



11/6/24, 2:02 PM Lecture18

Identify the pairs of points that are compared in the
merge step following the recursive calls

() ol D)
o | T
@ @) o *
O . ’ ®
O { o @
O o ’ .‘__/.
@) e ©
o 2|0 ©

-

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 18/20



11/6/24, 2:02 PM Lecture18

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 19/20



11/6/24, 2:02 PM Lecture18

Divide and Conquer Summary

* Performance of Divide and Conquer
— Reduce the number or size of subproblems

— Reduce the amount of work in combining
solutions

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture18/Lecture18.html 20/20



