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Announcements

* No class on Monday

* Schedule S
— Lectures 19-23: Dynamic Programming \\,W‘\d \“
— Lectures 24-26: Network Flow (

G St
— Lectures 27-29: NP-Completeness
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Divide and Conquer

* D&C Algorithms
— MergeSort and QuickSort
— O(n?28%) Matrix Multiplication (Strassen)
— Integer Multiplication
— O(n) Median Algorithm
* Today’s Algorithms — combining solutions

— Counting Inversions
— Closest Pair (in 2D)
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Inversion Problem

leta,, ... a,beapermutationofl..n

(a, aJ] is an inversion if i < j
w
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and a; > a,

Problem: given a permutation, count the number of
Inversions

This can be done easily in O(n?) time

— Can we do better?
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Application

* Counting inversions can be use to measure
how close ranked preferences are

— People rank 20 movies, based on their rankings
you cluster people who like that same type of
movie
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Counting Inversions
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Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves
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Count the Inversions
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Problem — how do we count inversions between

* Solution — Count inversions while merging

sub problems in O(n) time?

L 1
1 12 |3 |4 |7 |11 )12 |15 5 |6 9 [10 (13 |14 |16
L
(4
Te[3[ y[ETe[3[l]U]

A

Standard merge algorithm — add to inversion count 3 r

when an element is moved from the upper array to the

solution
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Use the merge algorithm to count

Inversions
1 4 11 [12 2 7, T 7 S 2.
| [ 2|4 | 1
5 18 |9 |16 5] 10 113 | 14

Indicate the number of inversions for each
element detected when merging
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* Counting inversions between two sorted lists

Lecture18

Inversions

— O(1) per element to count inversions
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* Algorithm summary
— Satisfies the “Standard recurrence”

— T(n) =

2T(n/2) +cn
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e
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Closest Pair Problem (2D)

* Given a set of points find the pair of points p,
g that minimizes dist(p, q)
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Divide and conquer

* If we solve the problem on two subsets, does

it help? (Separate by

5

\-_1
O

median x coordinate)
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Packing Lemma

Suppose that the minimum distance between
points Is at least 5, what Is the maximum number of
points that can be packed in a ball of radius &7
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Combining Solutions

* Suppose the minimum separation from the
sub problems is o

* In looking for cross set closest pairs, we only

need to consider points with o of the
boundary

* How many cross border interactions do we
need to test?
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Details

* Preprocessing: sort points by y

* Merge step
— Select points in boundary zone

— For each point in the boundary

* Find highest point on the other side that is at most o
above

* Find lowest point on the other side that is at most o
below

* Compare with the points in this interval (there are at
most 6)
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Identify the pairs of points that are compared in the
merge step following the recursive calls
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Divide and Conquer Summary

* Performance of Divide and Conquer
— Reduce the number or size of subproblems

— Reduce the amount of work in combining
solutions
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