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CSE 417
Algorithms and Complexity

Autumn 2024
Lecture 18

Divide and Conquer
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Announcements

• No class on Monday
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Divide and Conquer

• D&C Algorithms

– MergeSort and QuickSort

– O(n2.80) Matrix Multiplication (Strassen)

– Integer Multiplication

– O(n) Median Algorithm

• Today’s Algorithms – combining solutions

– Counting Inversions

– Closest Pair (in 2D)
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Recurrences

• T(n) = 2 T(n/2) + n2

• T(n) = 2 T(n/2) + n
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Inversion Problem

• Let a1, . . ., an be a permutation of 1 . . n

• (ai, aj) is an inversion if i < j and ai > aj

• Problem: given a permutation, count the number of 
inversions

• This can be done easily in O(n2) time

– Can we do better?

4, 6, 1, 7, 3, 2, 5
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Application

• Counting inversions can be use to measure 
how close ranked preferences are

– People rank 20 movies, based on their rankings 
you cluster people who like that same type of 
movie
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Counting Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves
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11 12 4 1 7 2 3 15

11 12 4 1 7 2 3 15

9 5 16 8 6 13 10 14

9 5 16 8 6 13 10 14

Count the Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

5 12 3

15 10

19

8 6

44
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Problem – how do we count inversions between 
sub problems in O(n) time?

• Solution – Count inversions while merging

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16

Standard merge algorithm – add to inversion count 

when an element is moved from the upper array to the 

solution
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Use the merge algorithm to count 
inversions

1 4 11 12 2 3 7 15

5 8 9 16 6 10 13 14

Indicate the number of inversions for each

element detected when merging
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Inversions

• Counting inversions between two sorted lists
– O(1) per element to count inversions

• Algorithm summary
– Satisfies the “Standard recurrence” 

– T(n) = 2 T(n/2) + cn

x x x x x x x x y y y y y y y y

z z z z z z z z z z z z z z z z
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Closest Pair Problem (2D)

• Given a set of points find the pair of points p, 
q that minimizes dist(p, q)
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Divide and conquer

• If we solve the problem on two subsets, does 
it help?  (Separate by median x coordinate)

1 2
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Packing Lemma

Suppose that the minimum distance between 

points is at least , what is the maximum number of 

points that can be packed in a ball of radius ?
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Combining Solutions

• Suppose the minimum separation from the 
sub problems is 

• In looking for cross set closest pairs, we only 
need to consider points with  of the 
boundary

• How many cross border interactions do we 
need to test?
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A packing lemma bounds the number of 
distances to check


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Details

• Preprocessing: sort points by y

• Merge step
– Select points in boundary zone

– For each point in the boundary
• Find highest point on the other side that is at most  

above

• Find lowest point on the other side that is at most  
below

• Compare with the points in this interval (there are at 
most 6)
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Identify the pairs of points that are compared in the 

merge step following the recursive calls 
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Algorithm run time

• After preprocessing:

– T(n) = cn + 2 T(n/2)
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Divide and Conquer Summary

• Performance of Divide and Conquer

– Reduce the number or size of subproblems

– Reduce the amount of work in combining 
solutions
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