
1

CSE 417
Algorithms and Complexity

Autumn 2024
Lecture 18

Divide and Conquer

1

Announcements

• No class on Monday

2

Divide and Conquer

• D&C Algorithms

– MergeSort and QuickSort

– O(n2.80) Matrix Multiplication (Strassen)

– Integer Multiplication

– O(n) Median Algorithm

• Today’s Algorithms – combining solutions

– Counting Inversions

– Closest Pair (in 2D)

3

Recurrences

• T(n) = 2 T(n/2) + n2

• T(n) = 2 T(n/2) + n

4

Inversion Problem

• Let a1, . . ., an be a permutation of 1 . . n

• (ai, aj) is an inversion if i < j and ai > aj

• Problem: given a permutation, count the number of
inversions

• This can be done easily in O(n2) time

– Can we do better?

4, 6, 1, 7, 3, 2, 5

5

Application

• Counting inversions can be use to measure
how close ranked preferences are

– People rank 20 movies, based on their rankings
you cluster people who like that same type of
movie

6

1 2

3 4

5 6

2

Counting Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

7

11 12 4 1 7 2 3 15

11 12 4 1 7 2 3 15

9 5 16 8 6 13 10 14

9 5 16 8 6 13 10 14

Count the Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

5 12 3

15 10

19

8 6

44

8

Problem – how do we count inversions between
sub problems in O(n) time?

• Solution – Count inversions while merging

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16

Standard merge algorithm – add to inversion count

when an element is moved from the upper array to the

solution

9

Use the merge algorithm to count
inversions

1 4 11 12 2 3 7 15

5 8 9 16 6 10 13 14

Indicate the number of inversions for each

element detected when merging
10

Inversions

• Counting inversions between two sorted lists
– O(1) per element to count inversions

• Algorithm summary
– Satisfies the “Standard recurrence”

– T(n) = 2 T(n/2) + cn

x x x x x x x x y y y y y y y y

z z z z z z z z z z z z z z z z

11

Closest Pair Problem (2D)

• Given a set of points find the pair of points p,
q that minimizes dist(p, q)

12

7 8

9 10

11 12

3

Divide and conquer

• If we solve the problem on two subsets, does
it help? (Separate by median x coordinate)

1 2

13

Packing Lemma

Suppose that the minimum distance between

points is at least , what is the maximum number of

points that can be packed in a ball of radius ?

14

Combining Solutions

• Suppose the minimum separation from the
sub problems is 

• In looking for cross set closest pairs, we only
need to consider points with  of the
boundary

• How many cross border interactions do we
need to test?

15

A packing lemma bounds the number of
distances to check



16

Details

• Preprocessing: sort points by y

• Merge step
– Select points in boundary zone

– For each point in the boundary
• Find highest point on the other side that is at most 

above

• Find lowest point on the other side that is at most 
below

• Compare with the points in this interval (there are at
most 6)

17

Identify the pairs of points that are compared in the

merge step following the recursive calls

18

13 14

15 16

17 18

4

Algorithm run time

• After preprocessing:

– T(n) = cn + 2 T(n/2)

19

Divide and Conquer Summary

• Performance of Divide and Conquer

– Reduce the number or size of subproblems

– Reduce the amount of work in combining
solutions

20

19 20

	Slide 1: CSE 417 Algorithms and Complexity
	Slide 2: Announcements
	Slide 3: Divide and Conquer
	Slide 4: Recurrences
	Slide 5: Inversion Problem
	Slide 6: Application
	Slide 7: Counting Inversions
	Slide 8: Count the Inversions
	Slide 9: Problem – how do we count inversions between sub problems in O(n) time?
	Slide 10: Use the merge algorithm to count inversions
	Slide 11: Inversions
	Slide 12: Closest Pair Problem (2D)
	Slide 13: Divide and conquer
	Slide 14: Packing Lemma
	Slide 15: Combining Solutions
	Slide 16: A packing lemma bounds the number of distances to check
	Slide 17: Details
	Slide 18: Identify the pairs of points that are compared in the merge step following the recursive calls
	Slide 19: Algorithm run time
	Slide 20: Divide and Conquer Summary

