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CSE 417
Algorithms and Complexity

Autumn 2024
Lecture 11

Dijkstra’s algorithm
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Announcements

• Topics

– Dijkstra’s Algorithm (Section 4.4)

• Algorithm and why it works

– Next Week: Minimum Spanning Trees

• Reading

– 4.4, 4.5, 4.7, 4.9

• Midterm: Friday, November 1, in class
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Single Source Shortest Path Problem

• Given a graph and a start vertex s
– Determine distance of every vertex from s

– Identify shortest paths to each vertex
• Express concisely as a “shortest paths tree”

• Each vertex has a pointer to a predecessor on shortest 
path
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Construct Shortest Path Tree 
from s
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Warmup

• If P is a shortest path from s to v, and if t is on 
the path P, the segment from s to t is a 
shortest path between s and t

• WHY?  
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Dijkstra’s Algorithm

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
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Assume all edges have non-negative cost
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Simulate Dijkstra’s algorithm
(starting from s) on the graph
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Who was Dijkstra?

• What were his major contributions?
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http://www.cs.utexas.edu/users/EWD/

• Edsger Wybe Dijkstra was one of the most influential 
members of computing science's founding 
generation. Among the domains in which his 
scientific contributions are fundamental are 
– algorithm design 
– programming languages 
– program design 
– operating systems 
– distributed processing 
– formal specification and verification 
– design of mathematical arguments 
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Dijkstra’s Algorithm as a greedy algorithm

• Elements committed to the solution by order 
of minimum distance
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Correctness Proof

• Elements in S have the correct label

• Key to proof:  when v is added to S, it has the 
correct distance label.
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Proof

• Let v be a vertex in V-S with minimum d[v]

• Let Pv be a path of length d[v], with an edge (u,v)

• Let P be some other path to v.  Suppose P first leaves 
S on the edge (x, y)

– P = Psx + c(x,y) + Pyv

– Len(Psx) + c(x,y) ≥ d[y]

– Len(Pyv) ≥ 0

– Len(P) ≥ d[y] + 0 ≥ d[v] s
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Negative Cost Edges

• Draw a small example a negative cost edge 
and show that Dijkstra’s algorithm fails on this 
example

13

Dijkstra Implementation

• Basic implementation requires Heap for 
tracking the distance values

• Run time O(m log n)

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
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O(n2) Implementation for Dense Graphs

FOR i := 1 TO n

d[i] := Infinity;  visited[i] := FALSE;

d[s] := 0;

FOR i := 1 TO n

v := -1;  dMin := Infinity;

FOR j := 1 TO n

IF visited[j] = FALSE AND d[j] < dMin

v := j; dMin := d[j];

IF v = -1

RETURN;

visited[v] := TRUE;

FOR j := 1 TO n

IF d[v] + len[v, j] < d[j]

d[j] := d[v] + len[v, j];

prev[j] := v;
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Bottleneck Shortest Path

• Define the bottleneck distance for a path to be 
the maximum cost edge along the path
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Compute the bottleneck shortest paths
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How do you adapt Dijkstra’s algorithm  to handle 
bottleneck distances

• Does the correctness proof still apply?

18


