

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- Today's problems (Sections 4.3, 4.4)
 - Another homew ork scheduling task
 - Optimal Caching
- Start Dijkstra's shortest paths algorithm

Scheduling Theory

- Tasks
 - Execution time, value, release time, deadline
- Processors
 Single processor, multiple processors
- Objective Function many options, e.g.
 - Maximize tasks completed
 - Minimize number of processors to complete all tasks
 - Minimize the maximum lateness
 - Maximize value of tasks completed by deadline

Another version of HW scheduling

- · Assign values to HW units
- Maximize value completed by deadlines
- · Simplifying assumptions
 - All Homework itemstake one unit of time
 - All items available at time 0
 - $\, Each \, item \, has an \, integer \, deadline$
 - Each item has a value
 - Maximize value of items completed before their deadlines

Problem transformation

- Convert to an equivalent problem with release times and a uniform deadline
- If D is the latest deadline, set r'_i as D-d_i and d'_i as D

Starting from t = 0, schedule the highest value available task s = Ø; for i = 0 to D - 1 Add tasks with release time i to S; Remove highest value task t from S;

Schedule task t at i;

Greedy Algorithm

Correctness argument

- Show that the item at t = 1 is scheduled correctly
 - The argument can be repeated for t=2, 3, ...
 - Or the argument can be put in the framew ork of mathematical induction

11

First item scheduled is correct

- Let t be the task scheduled at i = 1, then there exists an optimal schedule with t at i = 1
- Suppose Opt = {a₁, a₂, a₃, ... } is an optimal schedule:
 - Case 1: t = a_1
 - Case 2: t ∉ Opt
 - Case 3: $t \neq a_1$ and $t \in Opt$

12

10

14

Interpretation

- · The transformation was done so that we could think about the first item to schedule. as opposed to the last item to schedule
- In the original problem with deadlines, this is asking "what task do I do last"
 - So this is a procrastination based approach!

13

Optimal Caching

- Memory Hierarchy
 - Fast Memory (RAM)
 - Slow Memory (DISK)
 - Move big blocks of data from DISK to RAM for processing
- Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Correctness Proof

- Sketch
- Start with Optimal Solution O
- · Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

18

Single Source Shortest Path Problem • Given a graph and a start vertex s

- Determine distance of every vertex froms
- Identify shortest paths to each vertex
 Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path

