

Autumn 2024 Lecture 10 – Greedy Algorithms III MATT GROENING

Announcements

- Today's lecture
 - Kleinberg-Tardos, 4.3, 4.4
- Friday
 - Kleinberg-Tardos, 4.4, 4.5

 Text book has lots of details on some of the proofs that I cover quickly

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- Today's problems (Sections 4.3, 4.4)
 - Another homework scheduling task
 - Optimal Caching
- Start Dijkstra's shortest paths algorithm

Scheduling Theory

- Tasks
 - Execution time, value, release time, deadline
- Processors
 - Single processor, multiple processors
- Objective Function many options, e.g.
 - Maximize tasks completed
 - Minimize number of processors to complete all tasks
 - Minimize the maximum lateness
 - Maximize value of tasks completed by deadline

Homework Scheduling

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed

- Goal minimize maximum lateness
 - Lateness: $L_i = f_i d_i$ if $f_i \ge d_i$

Result: Earliest Deadline First is Optimal for Min Max Lateness

Another version of HW scheduling

- Assign values to HW units
- Maximize value completed by deadlines
- Simplifying assumptions
 - All Homework items take one unit of time
 - All items available at time 0
 - Each item has an integer deadline
 - Each item has a value
 - Maximize value of items completed before their deadlines

Example

Task	Value	Deadline	
T ₁	2	2	
T ₂	3	2	
T ₃	4	4	
T_4	4	4	
T ₅	5	4	
T ₆	1	6	
T ₇	1	6	
T ₈	6	6	

What is the maximum value of tasks you can complete by their deadlines? What do you do first?

Problem transformation

 Convert to an equivalent problem with release times and a uniform deadline

If D is the latest deadline, set r_i as D-d_i and d_i as D

Greedy Algorithm

 Starting from t = 0, schedule the highest value available task

```
S = Ø;
for i = 0 to D - 1
   Add tasks with release time i to S;
   Remove highest value task t from S;
   Schedule task t at i;
```

Correctness argument

- Show that the item at t = 1 is scheduled correctly
 - The argument can be repeated for t=2, 3, . . .
 - Or the argument can be put in the framework of mathematical induction

First item scheduled is correct

 Let t be the task scheduled at i = 1, then there exists an optimal schedule with t at i = 1

- Suppose Opt = {a₁, a₂, a₃, . . . } is an optimal schedule:
 - Case 1: $t = a_1$
 - Case 2: t ∉ Opt
 - Case 3: $t \neq a_1$ and $t \in Opt$

Interpretation

- The transformation was done so that we could think about the first item to schedule, as opposed to the last item to schedule
- In the original problem with deadlines, this
 is asking "what task do I do last"
 - So this is a procrastination based approach!

Optimal Caching

- Memory Hierarchy
 - Fast Memory (RAM)
 - Slow Memory (DISK)
 - Move big blocks of data from DISK to RAM for processing
- Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution
 F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path

Construct Shortest Path Tree from s

Warmup

 If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t

22

Assume all edges have non-negative cost

Dijkstra's Algorithm

```
S = \{ \}; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
```


Simulate Dijkstra's algorithm (starting from s) on the graph

F	Round	Vertex Added	s	а	b	С	d
	1						
	2						
	3						
	4						
	5						