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Announcements

• Today’s lecture

– Kleinberg-Tardos, 4.3, 4.4

• Friday

– Kleinberg-Tardos, 4.4, 4.5 

• Text book has lots of details on some of 

the  proofs that I cover quickly
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Greedy Algorithms

• Solve problems with the simplest possible 

algorithm

• Today’s problems (Sections 4.3, 4.4)

– Another homework scheduling task

– Optimal Caching

• Start Dijkstra’s shortest paths algorithm
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Scheduling Theory

• Tasks

– Execution time,  value,  release time, deadline

• Processors

– Single processor,  multiple processors

• Objective Function – many options, e.g.

– Maximize tasks completed

– Minimize number of processors to complete all 
tasks

– Minimize the maximum lateness

– Maximize value of tasks completed by deadline
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Homework Scheduling

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness:   Li = fi – di if fi  di
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Result: Earliest Deadline First is 

Optimal for Min Max Lateness
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Another version of HW 

scheduling
• Assign values to HW units

• Maximize value completed by deadlines

• Simplifying assumptions
– All Homework items take one unit of time

– All items available at time 0
– Each item has an integer deadline

– Each item has a value

– Maximize value of items completed before their 
deadlines
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Example
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Task Value Deadline

T1 2 2

T2 3 2

T3 4 4

T4 4 4

T5 5 4

T6 1 6

T7 1 6

T8 6 6

What is the maximum value of tasks you 

can complete by their deadlines?

What do you do first?



Problem transformation

• Convert to an equivalent problem with 

release times and a uniform deadline

• If D is the latest deadline, set r’i as D-di 

and d’i as D
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Greedy Algorithm

• Starting from t = 0,  schedule the highest 

value available task
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S = ;

for i = 0 to D – 1

Add tasks with release time i to S;

Remove highest value task t from S;

Schedule task t at i;



Correctness argument

• Show that the item at t = 1 is scheduled 

correctly

– The argument can be repeated for t=2, 3, . . .

– Or the argument can be put in the framework 

of mathematical induction
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First item scheduled is correct

• Let t be the task scheduled at i = 1,  then 
there exists an optimal schedule with t at 
i = 1

• Suppose Opt = {a1, a2, a3, . . . } is an 
optimal schedule:

– Case 1: t = a1

– Case 2: t  Opt

– Case 3: t  a1 and t Opt
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Interpretation

• The transformation was done so that we 

could think about the first item to schedule, 

as opposed to the last item to schedule

• In the original problem with deadlines,  this 

is asking “what task do I do last”

– So this is a procrastination based approach!
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Optimal Caching

• Memory Hierarchy

– Fast Memory (RAM)

– Slow Memory (DISK)

– Move big blocks of data from DISK to RAM for 

processing

• Caching problem:

– Maintain collection of items in local memory

– Minimize number of items fetched
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Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A
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Optimal Caching

• If you know the sequence of requests, 
what is the optimal replacement pattern?

• Note – it is rare to know what the requests 
are in advance – but we still might want to 
do this:
– Some specific applications, the sequence is 

known
• Register allocation in code generation

– Competitive analysis, compare performance 
on an online algorithm with an optimal offline 
algorithm
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Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D
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Correctness Proof

• Sketch

• Start with Optimal Solution O

• Convert to Farthest in the Future Solution 

F-F

• Look at the first place where they differ

• Convert O to evict F-F element

– There are some technicalities here to ensure 

the caches have the same configuration . . .
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Single Source Shortest Path 

Problem
• Given a graph and a start vertex s

– Determine distance of every vertex from s

– Identify shortest paths to each vertex

• Express concisely as a “shortest paths tree”

• Each vertex has a pointer to a predecessor on 
shortest path
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Construct Shortest Path Tree 

from s
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Warmup

• If P is a shortest path from s to v, and if t is 

on the path P, the segment from s to t is a 

shortest path between s and t

• WHY?  
s

t
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Dijkstra’s Algorithm

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
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Assume all edges have non-negative cost
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Simulate Dijkstra’s algorithm

(starting from s) on the graph
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