Algorithms and Complexity

Autumn 2024
Lecture 10 — Greedy Algorithms lll



Announcements

 Today's lecture

— Kleinberg-Tardos, 4.3,4.4
* Friday

— Kleinberg-Tardos, 4.4, 4.5

 Text book has lots of details on some of
the proofs that | cover quickly



Greedy Algorithms
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* Solve problems with the simplest possible
algorithm

* Today’s problems (Sections 4.3, 4.4)
— Another homework scheduling task
— Optimal Caching

« Start Dijkstra’s shortest paths algorithm



Scheduling Theory

e Tasks
— Execution time, value, release time, deadline

* Processors
— Single processor, multiple processors

* Objective Function — many options, e.g.
— Maximize tasks completed

— Minimize number of processors to complete all
tasks

— Minimize the maximum lateness
— Maximize value of tasks completed by deadline



Homework Scheduling

Each task has a length t and a deadline d,
All tasks are available at the start

One task may be worked on at a time

All tasks must be completed

Goal minimize maximum lateness
—Lateness: L =f—-diff >d,



Result: Earliest Deadline First is
Optimal for Min Max Lateness

Time Deadline Lateness A;  Lateness A,
5 6 0 3
3 4 1 0
4 5 4 2




Another version of HW

scheduling

» Assign values to HW units
 Maximize value completed by deadlines

« Simplifying assumptions
— All Homework items take one unit of time
— All items available at time O
— Each item has an integer deadline
— Each item has a value

— Maximize value of items completed before their
deadlines




Example

Task Value Deadline
T, 2 2
T, 3 2
T3 4 4
T, 4 4
T 5 4
Ts 1 6
T, 1 6
Tg 6 6

What is the maximum value of tasks you
can complete by their deadlines?
What do you do first?



Problem transformation

« Convertto an equivalent problem with
release times and a uniform deadline

* |f D Is the latest deadline, set r’; as D-d.
and d’;as D



Greedy Algorithm

« Starting fromt =0, schedule the highest
value available task

S = J;

for i =0 to D -1
Add tasks with release time 1 to S;
Remove highest value task t from S;
Schedule task t at 1i;
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Correctness argument

 Show that the item att =1 is scheduled
correctly
— The argument can be repeated for t=2, 3, . ..

— Or the argument can be put in the framework
of mathematical induction
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First item scheduled I1s correct

 Lett be the task scheduledati =1, then
there exists an optimal schedule with t at

1=1

» Suppose Opt={a,, a,,as, ... }isan
optimal schedule:
—Case 1. t=4a,
— Case 2:t g Opt
— Case 3:t#a; andt €Opt
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Interpretation

 The transformation was done so that we
could think about the first item to schedule,
as opposed to the last item to schedule

* In the original problem with deadlines, this
Is asking “what task do | do last”

— So this Is a procrastination based approach!
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Optimal Caching

 Memory Hierarchy
— Fast Memory (RAM)
— Slow Memory (DISK)

— Move big blocks of data from DISK to RAM for
processing

» Caching problem:
— Maintain collection of items In local memory
— Minimize number of items fetched
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Caching example

A B C DAEBADACBDA
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Optimal Caching

* If you know the sequence of requests,
what Is the optimal replacement pattern?

* Note — It Is rare to know what the requests
are in advance — but we still might want to
do this:

— Some specific applications, the sequence Is
known
« Register allocation in code generation

— Competitive analysis, compare performance
on an online algorithm with an optimal offline
algorithm
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Farthest in the future algorithm

 Discard element used farthest in the future

ABCACDCBCAD
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Correctness Proof

Sketch

Start with Optimal Solution O

Convert to Farthest in the Future Solution
F-F

Look at the first place where they differ

Convert O to evict F-F element

— There are some technicalities here to ensure
the caches have the same configuration . . .
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Single Source Shortest Path

Problem

* Glven a graph and a start vertex s

— Determine distance of every vertex from s

— ldentify shortest paths to each vertex

» Express concisely as a “shortest paths tree”

« Each vertex has a pointer to a predecessor on
shortest path
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Construct Shortest Path Tree
from s
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Warmup

 If P Is a shortest path fromstov,andiftis
on the path P, the segmentfromstotisa
shortest path between s and t

VT

« WHY?
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Assume all edges have non-negative cost

Dijkstra’s Algorithm

S={}; d[s]=0; d[v]=infinityforv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], d[v] + c(v, w))
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Simulate Dijkstra’s algorithm
(starting from s) on the graph

Vertex S a b

Round Added

bW N
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