
CSE 417

Algorithms and Complexity

Autumn 2024

Lecture 10 – Greedy Algorithms III

1

Announcements

• Today’s lecture

– Kleinberg-Tardos, 4.3, 4.4

• Friday

– Kleinberg-Tardos, 4.4, 4.5

• Text book has lots of details on some of

the proofs that I cover quickly

2

Greedy Algorithms

• Solve problems with the simplest possible

algorithm

• Today’s problems (Sections 4.3, 4.4)

– Another homework scheduling task

– Optimal Caching

• Start Dijkstra’s shortest paths algorithm

3

Scheduling Theory

• Tasks

– Execution time, value, release time, deadline

• Processors

– Single processor, multiple processors

• Objective Function – many options, e.g.

– Maximize tasks completed

– Minimize number of processors to complete all
tasks

– Minimize the maximum lateness

– Maximize value of tasks completed by deadline

4

Homework Scheduling

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness: Li = fi – di if fi  di

5

Result: Earliest Deadline First is

Optimal for Min Max Lateness

2

3

4

5

6

4

5

12

DeadlineTime

a1

a2

a3

a4

Lateness A1 Lateness A2

0

1

4

2

3

0

2

2

6

Another version of HW

scheduling
• Assign values to HW units

• Maximize value completed by deadlines

• Simplifying assumptions
– All Homework items take one unit of time

– All items available at time 0
– Each item has an integer deadline

– Each item has a value

– Maximize value of items completed before their
deadlines

7

Example

8

Task Value Deadline

T1 2 2

T2 3 2

T3 4 4

T4 4 4

T5 5 4

T6 1 6

T7 1 6

T8 6 6

What is the maximum value of tasks you

can complete by their deadlines?

What do you do first?

Problem transformation

• Convert to an equivalent problem with

release times and a uniform deadline

• If D is the latest deadline, set r’i as D-di

and d’i as D

9

Greedy Algorithm

• Starting from t = 0, schedule the highest

value available task

10

S = ;

for i = 0 to D – 1

Add tasks with release time i to S;

Remove highest value task t from S;

Schedule task t at i;

Correctness argument

• Show that the item at t = 1 is scheduled

correctly

– The argument can be repeated for t=2, 3, . . .

– Or the argument can be put in the framework

of mathematical induction

11

First item scheduled is correct

• Let t be the task scheduled at i = 1, then
there exists an optimal schedule with t at
i = 1

• Suppose Opt = {a1, a2, a3, . . . } is an
optimal schedule:

– Case 1: t = a1

– Case 2: t  Opt

– Case 3: t  a1 and t Opt

12

Interpretation

• The transformation was done so that we

could think about the first item to schedule,

as opposed to the last item to schedule

• In the original problem with deadlines, this

is asking “what task do I do last”

– So this is a procrastination based approach!

13

Optimal Caching

• Memory Hierarchy

– Fast Memory (RAM)

– Slow Memory (DISK)

– Move big blocks of data from DISK to RAM for

processing

• Caching problem:

– Maintain collection of items in local memory

– Minimize number of items fetched
14

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

15

Optimal Caching

• If you know the sequence of requests,
what is the optimal replacement pattern?

• Note – it is rare to know what the requests
are in advance – but we still might want to
do this:
– Some specific applications, the sequence is

known
• Register allocation in code generation

– Competitive analysis, compare performance
on an online algorithm with an optimal offline
algorithm

16

Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

17

Correctness Proof

• Sketch

• Start with Optimal Solution O

• Convert to Farthest in the Future Solution

F-F

• Look at the first place where they differ

• Convert O to evict F-F element

– There are some technicalities here to ensure

the caches have the same configuration . . .

18

19

Single Source Shortest Path

Problem
• Given a graph and a start vertex s

– Determine distance of every vertex from s

– Identify shortest paths to each vertex

• Express concisely as a “shortest paths tree”

• Each vertex has a pointer to a predecessor on
shortest path

s

v

x

u
1 2

5

3 4

s

v

x

u

1

3

3

20

Construct Shortest Path Tree

from s

a

b

c
s

e

g

f

d

4

2

-3

2

1
5

4

-2
3

3

6

3

7

4
a

b

c
s

e

g

f

d

21

Warmup

• If P is a shortest path from s to v, and if t is

on the path P, the segment from s to t is a

shortest path between s and t

• WHY?
s

t
v

22

Dijkstra’s Algorithm

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1

4

3

2

3

2

1

2

10

1

2 2

5

4

Assume all edges have non-negative cost

23

Simulate Dijkstra’s algorithm

(starting from s) on the graph

1

2

3

4

5

Round
Vertex

Added
s a b c d

b d

ca

1

1

1

23

4

6

1

3

4
s

24

