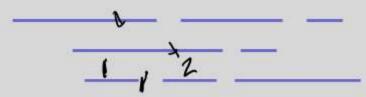
Lecture09

CSE 417 Algorithms and Complexity

Autumn 2024 Lecture 9 – Greedy Algorithms II

Announcements

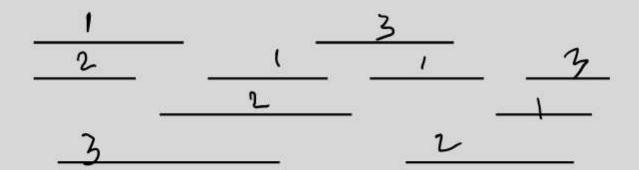
- Today's lecture
 - Kleinberg-Tardos, 4.2, 4.3
- Wednesday and Friday
 - Kleinberg-Tardos, 4.4, 4.5



Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today's problems (Sections 4.2, 4.3)
 - Graph Coloring
 - Homework Scheduling
 - Optimal Caching

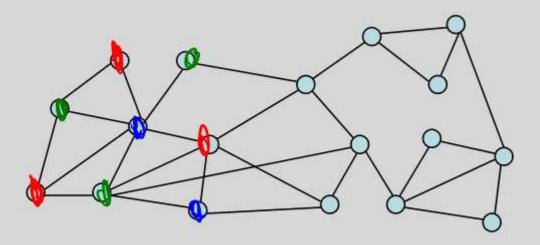
Interval Scheduling


- Tasks occur at fixed times, single processor
- Maximize number of tasks completed

- Earliest finish time first algorithm optimal
- Optimality proof: stay ahead lemma
 - Mathematical induction is the technical tool

Scheduling all intervals with multiple processors

 Minimize number of processors to schedule all intervals

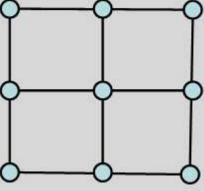


Depth: Maximum number of overlapping intervals

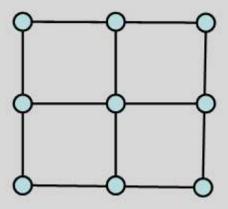
5/2 1, 11.25 / 11.			
, , ,		Runhin	v ?
olulogn)	Algori	thm	
1	~_	O(n2)	-
Sort intervals by start tim	e ol	nlogn)	algority Q.
for i = 1 to n			
Assign interval i	to the lowest h	umbered idle prod	essor
· · · · · · · · · · · · · · · · · · ·			/ /
		n <u>=</u>	
9 <u></u>			
			6

Greedy Graph Coloring

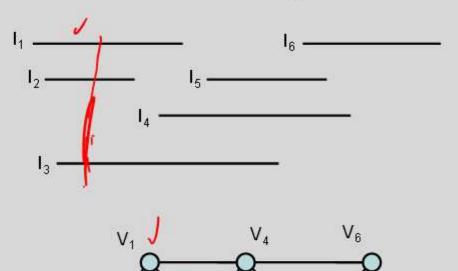
Theorem: An undirected graph with maximum degree K can be colored with K+1 colors



Greedy Coloring Algorithm

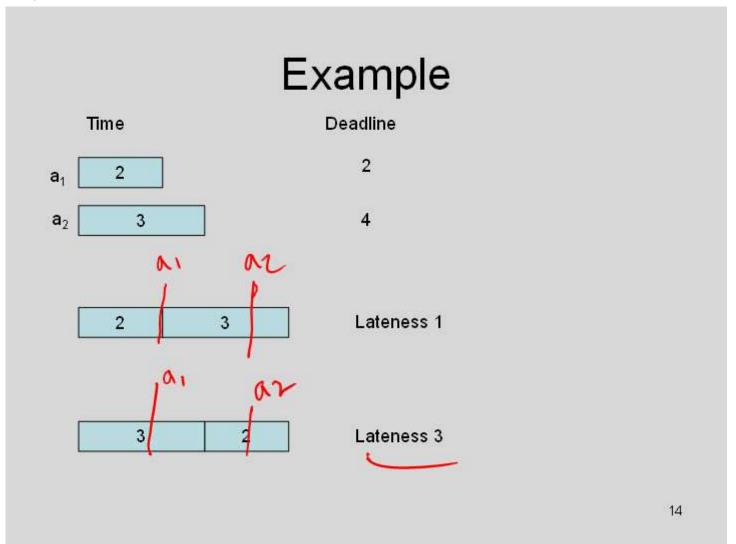

- · Assume maximum degree K
- Pick a vertex v, and assign a color not in N(v) from [1, . . . , K + 1]
- · Always an available color
- In the worst case, this algorithm cannot be improved
 - There exists a graph of degree K requiring K+1 colors

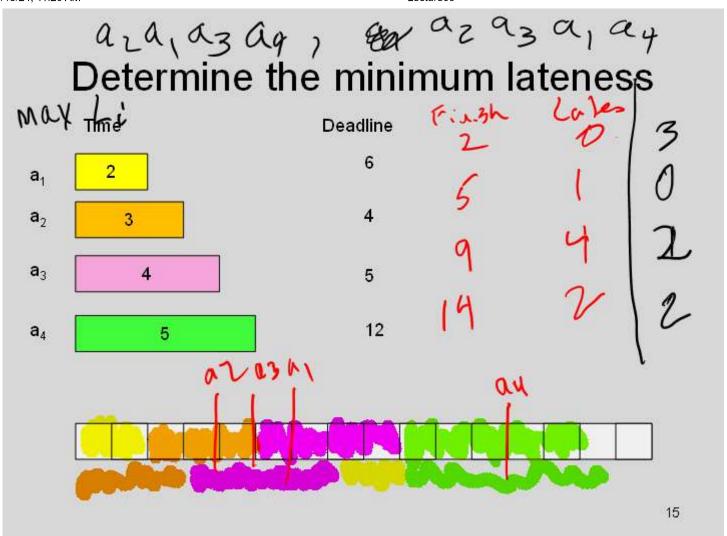
K₅


Coloring Algorithm, Version 1

Coloring Algorithm, Version 2

Interval scheduling is graph coloring

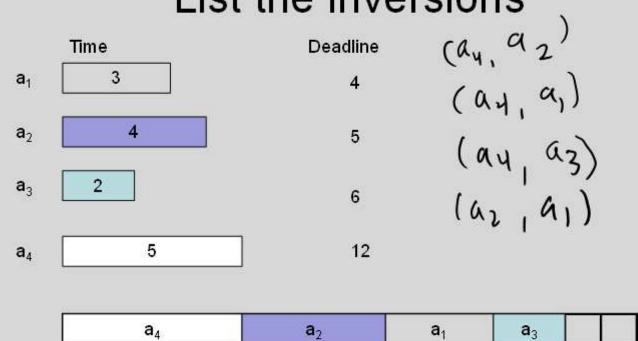

Homework Scheduling


- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order
- Can I get all my work turned in on time?
- If I can't get everything in, I want to minimize the maximum lateness

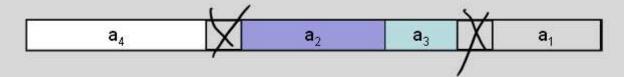
Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- · All tasks must be completed
- Goal minimize maximum lateness

-Lateness:
$$L_i = f_i - d_i$$
 if $f_i \ge d_i$


Greedy Algorithm

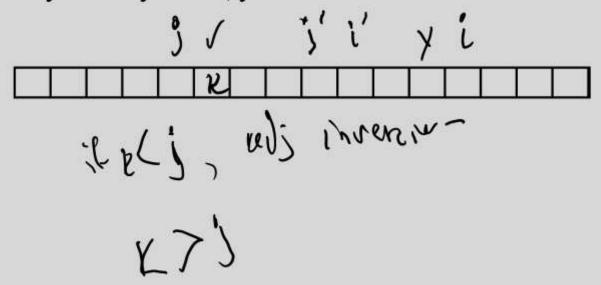
- · Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal


Analysis

- Suppose the jobs are ordered by deadlines,
 d₁ ≤ d₂ ≤ . . . ≤ d_n
- A schedule has an inversion if job j is scheduled before i where j > i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

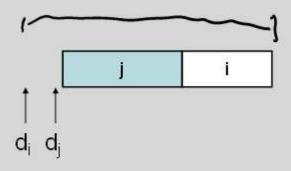
List the inversions

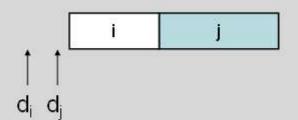
Lemma: There is an optimal schedule with no idle time

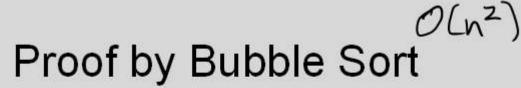


- It doesn't hurt to start your homework early!
- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof

Lemma




 If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion



Interchange argument

Suppose there is a pair of jobs i and j, with
 d_i ≤ d_j, and j scheduled immediately
 before i. Interchanging i and j does not
 increase the maximum lateness.

$d_2 d_3$ d_4 a_4 \mathbf{a}_2 a, a_3 a_4 a_1 a_3 a_2 a_1 a_2 a_4 a_3 a \mathbf{a}_3 \mathbf{a}_2 a_4 a_1 a_3 a_4

Determine maximum lateness

Real Proof

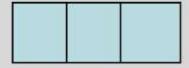
- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

 Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

· How is the model unrealistic?


Extensions

- What if the objective is to minimize the sum of the lateness?
 - EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example

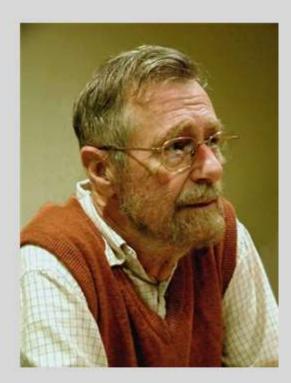
A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

· Discard element used farthest in the future



A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

Later this week

