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Announcements

* Reading
— For today, sections 4.1, 4.2,
— For next week sections 4.4, 45, 4.7, 4.8

 Homework 3 is available
— Graph algorithms
— Programming problem: Random Graphs
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Aighlight from last lecture:
opological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

® Y
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Greedy Algorithms

« Solve problems with the simplest possible
algorithm

* The hard part: showing that something
simple actually works

 Pseudo-definition

— An algorithm Is Greedy If it builds its solution
by adding elements one at a time using a
simple rule
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Scheduling Theory

L ]

Tasks

— Processing requirements, release times,
deadlines

Processors
Precedence constraints

Objective function
— Jobs scheduled, lateness, total execution time

»

L]
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Interval Scheduling

 Tasks occur at fixed times
Single processor

Maximize number of tasks completed
2

*

*

_@

0 a

Tasks {1, 2, ... N}
Start and finish times: s(i), f(i)

*

*
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What is the largest solution?

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 7124



10/11/24, 2:38 PM Lecture08

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks |, A
is the rule determining the greedy algorithm

I={}

While (T is not empty)
Select atasktfrom T by a rule A
Addt to

Remove t and all tasks incompatible with t from T
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Simulate the greedy algorithm for
each of these heuristics
Schedule earliest starting task

EAA AL ——

Schedulg shortest available task
T |

@

Schedule task with fewest conflicting tasks
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Greedy solution based on earliest
finishing time

Example 1

Example 2

Example 3

10
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Theorem: Earliest Finish Algorithm
Is Optimal

« Key idea: Earliest Finish Algorithm stays e N —

ahead N\ —\ —

« LetA={i,, ..., I} be the set of tasks found
by EFA in increasing order of finish times

« LetB={j;, ..., J,t be the set of tasks
found by a different algorithm in increasing
order of finish times

« Show that for r = min(k, m), f(i,) = f(j,)

11
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Stay ahead lemma

A always stays ahead of B, f(i.) = f(j,)
* Induction argument

—f(iy) = 1(4)
~ 1 §(iq) < F(q) the

1

e, e e e
h"—'-i--—ﬁ_._'\"-li——
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Completing the proof

« LetA={l, .. . I} be the set of tasks found by
EFA Iin increasing order of finish times

« LetO = {4, . .., | e the set of tasks found by
an optimal algorithm in increasing order of finish
times

« If kK <m, then the Earliest Finish Algorithm
stopped before it ran out of tasks

13
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Scheduling all intervals

* Minimize number of processors to
schedule all intervals

14
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How many processors are needed
for this example?

/

— .
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Prove that you cannot schedule this set
of intervals with two processors

}

[

]
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Depth: maximum number of
Intervals active

17
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Algorithm

« Sort by start times

e Suppose maximum depth is d, create d
slots

« Schedule items in increasing order, assign
each item to an open slot

» Correctness proof. \When we reach an
item, we always have an open slot

18
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Greedy Graph Coloring

Theorem: An undirected graph with maximum
degree K can be colored with K+1 colors
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Coloring Algorithm, Version 1

Let k be the largest vertex degree
Choose k+l1 colors

for each vertex
Color[v] = uncolored

for each vertex
Iet o be a
Color [v]

color not used in H[v]
o

O O—0

"
-
\
./
N\
/
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Coloring Algorithm, Version 2

for each vertex
Color[v] = uncolored

for each wvertesx v
Iet o be the smallest color not used in MN[w]

Color[v] = o

O

O
_o
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Scheduling tasks

*

Each task has a length t, and a deadline d,
All tasks are available at the start

One task may be worked on at a time

All tasks must be completed

*

*

*

Goal minimize maximum lateness
—Lateness =f,—d, if f; =2 d;

*

22
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Determine the minimum lateness

Time Deadline
5 6
3 4
4 5

5 12

24
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