10/11/24, 2:38 PM Lecture08

Lecture(08

CSE 417
Algorithms and Complexity

Greedy Algorithms
Autumn 2024
Lecture 8

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 1/24



10/11/24, 2:38 PM Lecture08

Announcements

* Reading
— For today, sections 4.1, 4.2,
— For next week sections 4.4, 45, 4.7, 4.8

 Homework 3 is available
— Graph algorithms
— Programming problem: Random Graphs

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 2/24



10/11/24, 2:38 PM Lecture08

Aighlight from last lecture:
opological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

® Y
TN,

Sl g

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 3/24



10/11/24, 2:38 PM Lecture08

Greedy Algorithms

« Solve problems with the simplest possible
algorithm

* The hard part: showing that something
simple actually works

 Pseudo-definition

— An algorithm Is Greedy If it builds its solution
by adding elements one at a time using a
simple rule

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 4/24



10/11/24, 2:38 PM Lecture08

Scheduling Theory

L ]

Tasks

— Processing requirements, release times,
deadlines

Processors
Precedence constraints

Objective function
— Jobs scheduled, lateness, total execution time

»

L]

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 5/24



10/11/24, 2:38 PM Lecture08

Interval Scheduling

 Tasks occur at fixed times
Single processor

Maximize number of tasks completed
2

*

*

_@

0 a

Tasks {1, 2, ... N}
Start and finish times: s(i), f(i)

*

*

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 6/24



10/11/24, 2:38 PM Lecture08

What is the largest solution?

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 7124



10/11/24, 2:38 PM Lecture08

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks |, A
is the rule determining the greedy algorithm

I={}

While (T is not empty)
Select atasktfrom T by a rule A
Addt to

Remove t and all tasks incompatible with t from T

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 8/24



10/11/24, 2:38 PM Lecture08

Simulate the greedy algorithm for
each of these heuristics
Schedule earliest starting task

EAA AL ——

Schedulg shortest available task
T |

@

Schedule task with fewest conflicting tasks

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html

9/24



10/11/24, 2:38 PM Lecture08

Greedy solution based on earliest
finishing time

Example 1

Example 2

Example 3

10

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 10/24



10/11/24, 2:38 PM Lecture08

Theorem: Earliest Finish Algorithm
Is Optimal

« Key idea: Earliest Finish Algorithm stays e N —

ahead N\ —\ —

« LetA={i,, ..., I} be the set of tasks found
by EFA in increasing order of finish times

« LetB={j;, ..., J,t be the set of tasks
found by a different algorithm in increasing
order of finish times

« Show that for r = min(k, m), f(i,) = f(j,)

11

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 11/24



10/11/24, 2:38 PM Lecture08

Stay ahead lemma

A always stays ahead of B, f(i.) = f(j,)
* Induction argument

—f(iy) = 1(4)
~ 1 §(iq) < F(q) the

1

e, e e e
h"—'-i--—ﬁ_._'\"-li——

12

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 12/24



10/11/24, 2:38 PM Lecture08

Completing the proof

« LetA={l, .. . I} be the set of tasks found by
EFA Iin increasing order of finish times

« LetO = {4, . .., | e the set of tasks found by
an optimal algorithm in increasing order of finish
times

« If kK <m, then the Earliest Finish Algorithm
stopped before it ran out of tasks

13

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html

13/24



10/11/24, 2:38 PM Lecture08

Scheduling all intervals

* Minimize number of processors to
schedule all intervals

14

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html

14/24



10/11/24, 2:38 PM Lecture08

How many processors are needed
for this example?

/

— .

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 15/24



10/11/24, 2:38 PM Lecture08

Prove that you cannot schedule this set
of intervals with two processors

}

[

]

16

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 16/24



10/11/24, 2:38 PM Lecture08

Depth: maximum number of
Intervals active

17

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html

17/24



10/11/24, 2:38 PM Lecture08

Algorithm

« Sort by start times

e Suppose maximum depth is d, create d
slots

« Schedule items in increasing order, assign
each item to an open slot

» Correctness proof. \When we reach an
item, we always have an open slot

18

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 18/24



10/11/24, 2:38 PM Lecture08

Greedy Graph Coloring

Theorem: An undirected graph with maximum
degree K can be colored with K+1 colors

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 19/24



10/11/24, 2:38 PM Lecture08

Coloring Algorithm, Version 1

Let k be the largest vertex degree
Choose k+l1 colors

for each vertex
Color[v] = uncolored

for each vertex
Iet o be a
Color [v]

color not used in H[v]
o

O O—0

"
-
\
./
N\
/

20

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 20/24



10/11/24, 2:38 PM Lecture08

Coloring Algorithm, Version 2

for each vertex
Color[v] = uncolored

for each wvertesx v
Iet o be the smallest color not used in MN[w]

Color[v] = o

O

O
_o

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html

21

21/24



10/11/24, 2:38 PM Lecture08

Scheduling tasks

*

Each task has a length t, and a deadline d,
All tasks are available at the start

One task may be worked on at a time

All tasks must be completed

*

*

*

Goal minimize maximum lateness
—Lateness =f,—d, if f; =2 d;

*

22

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 22/24



10/11/24, 2:38 PM Lecture08

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 23/24



10/11/24, 2:38 PM Lecture08

Determine the minimum lateness

Time Deadline
5 6
3 4
4 5

5 12

24

https://courses.cs.washington.edu/courses/cse417/24au/lectures/Lecture08/Lecture08.html 24/24



