

CSE 417 Algorithms and Complexity

Greedy Algorithms Autumn 2024 Lecture 8

Announcements

- Reading
 - For today, sections 4.1, 4.2,
 - For next week sections 4.4, 4.5, 4.7, 4.8
- · Homework 3 is available
 - Graph algorithms
 - Programming problem: Random Graphs

2

Highlight from last lecture: Topological Sort Algorithm While there exists a vertex v with in-degree 0 Output vertex v Delete the vertex v and all out going edges

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- · Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

4

Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- · Precedence constraints
- Objective function
 - Jobs scheduled, lateness, total execution time

Interval Scheduling

- · Tasks occur at fixed times
- · Single processor
- · Maximize number of tasks completed

Tasks {1, 2, ... N}

• Start and finish times: s(i), f(i)

What is the largest solution?
7

Greedy Algorithm for Scheduling Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm I = {} While (T is not empty) Select a task t from T by a rule A Add t to I Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for each of these heuristics
Schedule earliest starting task

Schedule shortest av ailable task

Schedule task with fewest conflicting tasks

finishing time
Example 1
Example 2
Example 3

Theorem: Earliest Finish Algorithm is Optimal

- Key idea: Earliest Finish Algorithm stays ahead
- Let A = {i₁, ..., i_k} be the set of tasks found by EFA in increasing order of finish times
- Let B = {j₁, ..., j_m} be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r \le \min(k, m)$, $f(i_r) \le f(j_r)$

11

Stay ahead lemma

- A always stays ahead of B, f(i_r) ≤ f(j_r)
- · Induction argument
 - $-f(i_1) \le f(j_1)$
 - If $f(i_{r-1}) \le f(j_{r-1})$ then $f(i_r) \le f(j_r)$

Completing the proof

- Let A = {i₁, ..., i_k} be the set of tasks found by EFA in increasing order of finish times
- Let $O = \{j_1, \ldots, j_m\}$ be the set of tasks found by an optimal algorithm in increasing order of finish times
- If k < m, then the Earliest Finish Algorithm stopped before it ran out of tasks

13

Scheduling all intervals

 Minimize number of processors to schedule all intervals

14

How many processors are needed for this example?

Prove that you cannot schedule this set of intervals with two processors

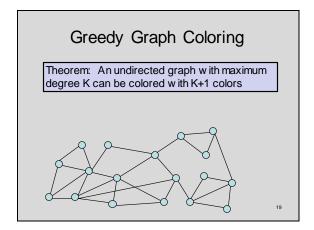
16

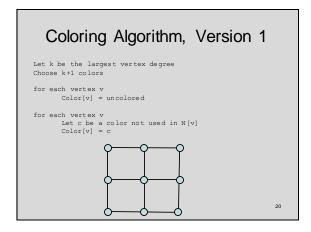
Depth: maximum number of intervals active

17

Algorithm

- Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot





Coloring Algorithm, Version 2 for each vertex v Color[v] = uncolored for each vertex v Let c be the smallest color not used in N [v] Color[v] = c21

Scheduling tasks

- Each task has a length ti and a deadline di
- · All tasks are available at the start
- · One task may be worked on at a time
- · All tasks must be completed
- · Goal minimize maximum lateness
 - Lateness = $f_i d_i$ if $f_i \ge d_i$

