Lecture07

CSE 417 Algorithms and Complexity

Graph Algorithms
Autumn 2024
Lecture 7

,

Announcements

- Reading
 - Chapter 3
 - Start on Chapter 4
 - Greedy Algorithms
- Homework 2

Graph Connectivity

- An undirected graph is connected if there is a path between every pair of vertices x and y
- A connected component is a maximal connected subset of vertices

Connected Components

Undirected Graphs

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Generalization: K-Connectivity

- An undirected graph is K-connected if every pair of distinct vertices is connected by at least K distinct paths
- Biconnected = 2-connected

ß

Directed Graphs

 A directed graph is strongly connected if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x

Testing if a graph is strongly connected

- Pick a vertex x
 - $-S_1 = \{ y \mid path from x to y \}$
 - $-S_2 = \{ y \mid path from y to x \}$
 - If $|S_1| = n$ and $|S_2| = n$ then strongly connected
- Compute S₂ with a "Backwards BFS"
 - Reverse edges and compute a BFS

Strongly Connected Components

A set of vertices C is a strongly connected component if C is a maximal strongly connected subgraph

Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time
- S₁ = { y | path from v to y }
- S₂ = { y | path from y to v}
- SCC containing v is S₁ Intersect S₂

Topological Sort

 Given a set of tasks with precedence constraints, find a linear order of the tasks

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

A F B

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

· Proof:

- Pick a vertex v₁, if it has in-degree 0 then done
- If not, let (v₂, v₁) be an edge, if v₂ has in-degree 0 then done
- If not, let (v₃, v₂) be an edge . . .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each

Stable Matching Results

- Averages of 5 runs
- · Much better for M than W
- Why is it better for M?
- What is the growth of mrank and w-rank as a function of n?

n	m-rapk	w-rank
500	/ 5.10	98.05
500	7.52	66.95
500	8.57	58.18
500	6.32	75.87
500	5.25	90.73
500	6.55	77.95
	\ /	
1000	6.80	146.93
1000	6.50	154.71
1000	7.14	133.53
1000	7.44	128.96
1000	7.36	137.85
1000	7.04	140.40
2000	7.83	257.79
2000	7.50	263.78
2000	11.42	175.17
2000	7.16	274.76
2000	7.54	261.60
2000	8.29	246.62

Coupon Collector Problem

- · n types of coupons
- Each round you receive a random coupon
- How many rounds until you have received all types of coupons
- p_i is the probability of getting a new coupon after i-1 have been collected
- t_i is the time to receive the i-th type of coupon after i-1 have been received

$$p_i = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$$

 t_i has geometric distribution with expectation

$$rac{1}{p_i} = rac{n}{n-i+1}$$
 $\operatorname{E}(T) = \operatorname{E}(t_i + t_i)$

$$\begin{split} \mathrm{E}(T) &= \mathrm{E}(t_1 + t_2 + \dots + t_n) \\ &= \mathrm{E}(t_1) + \mathrm{E}(t_2) + \dots + \mathrm{E}(t_n) \\ &= \frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n} \\ &= \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{1} \\ &= n \cdot \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}\right) \\ &= n \cdot H_n. \end{split}$$

$$\mathrm{E}(T) = n \cdot H_n = n \log n + \gamma n + rac{1}{2} + O(1/n).$$

Stable Matching and Coupon Collecting

- Assume random preference lists
- Runtime of algorithm determined by number of proposals until all w's are matched
- Each proposal can be viewed¹ as asking a random w
- Number of proposals corresponds to number of steps in coupon collector problem

¹There are some technicalities here that are being ignored