10/8/2024

Announcements
* Reading
CSE 417 Algorithms and ~ Gl
C | . — Start on Chapter 4
Omp eXIty * Greedy Algorithms
* Homework 2
2
Graph Connectivity Connected Components
* An undirected graph is connected if there is a * Undirected Graphs
path between every pair of vertices x and y
* A connected component is a maximal ®
connected subset of vertices . q
4
Computing Connected Components in
LN . 2 Generalization: K-Connectivity
O(n+m) time
* A search algorithm from a vertex v can find all * An undirected graph is K-connected if every
vertices in v's component pair of distinct vertices is connected by at
+ While there is an unvisited vertex v, search least K distinct paths
from v to find a new component * Biconnected = 2-connected
6

10/8/2024

Directed Graphs

* Adirected graph is strongly connected if for
every pair of vertices x and y, there is a path
from x to y, and there is a path from y to x

M ZM
Strongly Connected Not Strongly Connected

Testing if a graph is strongly connected

* Pick a vertex x
—S,={y | pathfromxtoy}
—S,={y | path fromy tox }
—If |S;] =nand |S,| = n then strongly connected

» Compute S, with a “Backwards BFS”
— Reverse edges and compute a BFS

Strongly connected components can be
found in O(n+m) time
* Butit’s tricky!

* Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

* S, ={y| pathfromvtoy}
* S, ={y | path fromy to v}
* SCC containing v is S, Intersect S,

7

Strongly Connected Components

A set of vertices C is a strongly connected component

if C is a maximal strongly connected subgraph

) o 'V

(O]
L

9

10

Topological Sort

* Given a set of tasks with precedence
constraints, find a linear order of the tasks

G — G — GID

N

Q1D — @

™~

@>—

Find a topological order for the following
graph

11

12

10/8/2024

If a graph has a cycle, there is no Lemma: If a (finite) graph is acyclic, it has a
topological sort vertex with in-degree 0
e Consider the first vertex ¢ Proof:

have a repeated vertex, so we have a cycle

Sn thle c'yclle intthe @ @ — Pick a vertex v, if it has in-degree 0 then done
opological sor
polos —If not, let (v,, v;) be an edge, if v, has in-degree 0
. !t musF have an & e e dene
incoming edge
—If not, let (v;, v,) be an edge. . . .
— If this process continues for more than n steps, we

Definition: A graph is
Acyclic if it has no cycles

14

Topological Sort Algorithm Details for O(n+m) implementation

While there exists a vertex v with in-degree 0 * Maintain a list of vertices of in-degree 0
Output vert .
SR * Each vertex keeps track of its in-degree

Delete the vertex v and all out going edges

@) * Update in-degrees and list when edges are

(c) L) removed
Ké'\ \ / \ * m edge removals at O(1) cost each
@\»@

16
Stable Matching Results Coupon Collector Problem
n—(i—1) n—i+1
n m-rank w-rank . f »;
* Averages of 5 runs 500 510 o805 n types of coupons n n
» Much better for M than W wom © Eachroundyoureceivea - ., oot gsibuton win expecaton
50 632 587
.. 500 525 w07 i3 1 n
* Why is it better for M? w0 s s » How many rounds until you prae
have received all types of ;
1% e e s E(T) =E(t; + b+ +1,)
1000 650 15471 coupons /
1000 114 s . . = B(ty) + Blt2) + - + E(t,)
1000 744 12896 * p;is the probability of 1 1 1
. 100 13 s : ey —
* What is the growth of m- 100 o om0 getting a new coupon after i, r
i-1 have been collected n n n
rank and w-rank as a 2000 2w s) .) =atnat oty
function of n? 2000 750 2e7s ¢ t;is the time to receive the - 1
? 200 we sy ;)
s T i-th type of coupon afteri-1 n- (T gt ;)
2000 750 26160 have been received
2000 829 26,62 =n-H,.
E(T)=n-H, =nlogn+ yn + % +O(1/n)

18

Stable Matching and Coupon
Collecting

* Assume random
preference lists

* Runtime of algorithm
determined by number of
proposals until all w’s are
matched

* Each proposal can be
viewed! as asking a
random w

* Number of proposals
corresponds to number of
steps in coupon collector
problem

“There are some technicalities here that are being ignored

19

10/8/2024

	Slide 1: CSE 417 Algorithms and Complexity
	Slide 2: Announcements
	Slide 3: Graph Connectivity
	Slide 4: Connected Components
	Slide 5: Computing Connected Components in O(n+m) time
	Slide 6: Generalization: K-Connectivity
	Slide 7: Directed Graphs
	Slide 8: Testing if a graph is strongly connected
	Slide 9: Strongly Connected Components
	Slide 10: Strongly connected components can be found in O(n+m) time
	Slide 11: Topological Sort
	Slide 12: Find a topological order for the following graph
	Slide 13: If a graph has a cycle, there is no topological sort
	Slide 14: Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0
	Slide 15: Topological Sort Algorithm
	Slide 16: Details for O(n+m) implementation
	Slide 17: Stable Matching Results
	Slide 18: Coupon Collector Problem
	Slide 19: Stable Matching and Coupon Collecting

