
CSE 417 Algorithms and
Complexity

Graph Algorithms

Autumn 2024

Lecture 7

1

Announcements

• Reading

– Chapter 3

– Start on Chapter 4

• Greedy Algorithms

• Homework 2

2

Graph Connectivity

• An undirected graph is connected if there is a
path between every pair of vertices x and y

• A connected component is a maximal
connected subset of vertices

3

Connected Components

• Undirected Graphs

4

Computing Connected Components in
O(n+m) time

• A search algorithm from a vertex v can find all
vertices in v’s component

• While there is an unvisited vertex v, search
from v to find a new component

5

Generalization: K-Connectivity

• An undirected graph is K-connected if every
pair of distinct vertices is connected by at
least K distinct paths

• Biconnected = 2-connected

6

Directed Graphs

• A directed graph is strongly connected if for
every pair of vertices x and y, there is a path
from x to y, and there is a path from y to x

Strongly Connected Not Strongly Connected

7

Testing if a graph is strongly connected

• Pick a vertex x

– S1 = { y | path from x to y }

– S2 = { y | path from y to x }

– If |S1| = n and |S2| = n then strongly connected

• Compute S2 with a “Backwards BFS”

– Reverse edges and compute a BFS

8

Strongly Connected Components

A set of vertices C is a strongly connected component

if C is a maximal strongly connected subgraph

9

Strongly connected components can be
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

• S1 = { y | path from v to y }

• S2 = { y | path from y to v}

• SCC containing v is S1 Intersect S2

10

Topological Sort

• Given a set of tasks with precedence
constraints, find a linear order of the tasks

112 113

311

341

291 373

372

312 511

444

417

11

Find a topological order for the following
graph

E

F

D

A

C

B

K

J
G

H
I

L

12

If a graph has a cycle, there is no
topological sort

• Consider the first vertex
on the cycle in the
topological sort

• It must have an
incoming edge B

A

D

E

F

C

Definition: A graph is

Acyclic if it has no cycles

13

Lemma: If a (finite) graph is acyclic, it has a
vertex with in-degree 0

• Proof:

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

14

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

 Output vertex v

 Delete the vertex v and all out going edges

E

F

D

A

C

B

K

J
G

H
I

L 15

Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are
removed

• m edge removals at O(1) cost each

16

Stable Matching Results

• Averages of 5 runs

• Much better for M than W

• Why is it better for M?

• What is the growth of m-
rank and w-rank as a
function of n?

n m-rank w-rank
500 5.10 98.05

500 7.52 66.95

500 8.57 58.18

500 6.32 75.87

500 5.25 90.73

500 6.55 77.95

1000 6.80 146.93

1000 6.50 154.71

1000 7.14 133.53

1000 7.44 128.96

1000 7.36 137.85

1000 7.04 140.40

2000 7.83 257.79

2000 7.50 263.78

2000 11.42 175.17

2000 7.16 274.76

2000 7.54 261.60

2000 8.29 246.62

17

Coupon Collector Problem

• n types of coupons

• Each round you receive a
random coupon

• How many rounds until you
have received all types of
coupons

• pi is the probability of
getting a new coupon after
i-1 have been collected

• ti is the time to receive the
i-th type of coupon after i-1
have been received

18

Stable Matching and Coupon
Collecting

• Assume random
preference lists

• Runtime of algorithm
determined by number of
proposals until all w’s are
matched

• Each proposal can be
viewed1 as asking a
random w

• Number of proposals
corresponds to number of
steps in coupon collector
problem

1There are some technicalities here that are being ignored
19

	Slide 1: CSE 417 Algorithms and Complexity
	Slide 2: Announcements
	Slide 3: Graph Connectivity
	Slide 4: Connected Components
	Slide 5: Computing Connected Components in O(n+m) time
	Slide 6: Generalization: K-Connectivity
	Slide 7: Directed Graphs
	Slide 8: Testing if a graph is strongly connected
	Slide 9: Strongly Connected Components
	Slide 10: Strongly connected components can be found in O(n+m) time
	Slide 11: Topological Sort
	Slide 12: Find a topological order for the following graph
	Slide 13: If a graph has a cycle, there is no topological sort
	Slide 14: Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0
	Slide 15: Topological Sort Algorithm
	Slide 16: Details for O(n+m) implementation
	Slide 17: Stable Matching Results
	Slide 18: Coupon Collector Problem
	Slide 19: Stable Matching and Coupon Collecting

