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Announcements

• Reading

– Chapter 3  

– Start on Chapter 4

• Greedy Algorithms

• Homework 2
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Graph Connectivity

• An undirected graph is connected if there is a 
path between every pair of vertices x and y

• A connected component is a maximal 
connected subset of vertices
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Connected Components

• Undirected Graphs
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Computing Connected Components in 
O(n+m) time

• A search algorithm from a vertex v can find all 
vertices in v’s component

• While there is an unvisited vertex v, search 
from v to find a new component
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Generalization:  K-Connectivity

• An undirected graph is K-connected if every 
pair of distinct vertices is connected by at 
least K distinct paths

• Biconnected = 2-connected
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Directed Graphs

• A directed graph is strongly connected if for 
every pair of vertices x and y,  there is a path 
from x to y,  and there is a path from y to x

Strongly Connected Not Strongly Connected

7



Testing if a graph is strongly connected

• Pick a vertex x

– S1 = { y | path from x to y }

– S2 = { y | path from y to x }

– If |S1| = n and |S2| = n then strongly connected

• Compute S2 with a “Backwards BFS”

– Reverse edges and compute a BFS
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Strongly Connected Components

A set of vertices C is a strongly connected component 

if C is a maximal strongly connected subgraph
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Strongly connected components can be 
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the 
vertices in v’s scc in O(n+m) time

• S1 = { y | path from v to y }

• S2 = { y | path from y to v}

• SCC containing v is S1 Intersect S2
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Topological Sort

• Given a set of tasks with precedence 
constraints, find a linear order of the tasks
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Find a topological order for the following 
graph
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If a graph has a cycle, there is no 
topological sort

• Consider the first vertex 
on the cycle in the 
topological sort

• It must have an 
incoming edge B
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Definition:  A graph is 

Acyclic if it has no cycles
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Lemma: If a (finite) graph is acyclic, it has a 
vertex with in-degree 0

• Proof:  

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0 
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we 
have a repeated vertex, so we have a cycle
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Topological Sort Algorithm

While there exists a vertex v with in-degree 0

 Output vertex v

 Delete the vertex v and all out going edges
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Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are 
removed

• m edge removals at O(1) cost each
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Stable Matching Results

• Averages of 5 runs

• Much better for M than W

• Why is it better for M?

• What is the growth of m-
rank and w-rank as a 
function of n?

n m-rank w-rank
500 5.10 98.05

500 7.52 66.95

500 8.57 58.18

500 6.32 75.87

500 5.25 90.73

500 6.55 77.95

1000 6.80 146.93

1000 6.50 154.71

1000 7.14 133.53

1000 7.44 128.96

1000 7.36 137.85

1000 7.04 140.40

2000 7.83 257.79

2000 7.50 263.78

2000 11.42 175.17

2000 7.16 274.76

2000 7.54 261.60

2000 8.29 246.62
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Coupon Collector Problem

• n types of coupons

• Each round you receive a 
random coupon

• How many rounds until you 
have received all types of 
coupons

• pi is the probability of 
getting a new coupon after 
i-1 have been collected

• ti is the time to receive the 
i-th type of coupon after i-1 
have been received
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Stable Matching and Coupon 
Collecting

• Assume random 
preference lists

• Runtime of algorithm 
determined by number of 
proposals until all w’s are 
matched

• Each proposal can be 
viewed1 as asking a 
random w

• Number of proposals 
corresponds to number of 
steps in coupon collector 
problem

1There are some technicalities here that are being ignored 
19


	Slide 1: CSE 417 Algorithms and Complexity
	Slide 2: Announcements
	Slide 3: Graph Connectivity
	Slide 4: Connected Components
	Slide 5: Computing Connected Components in O(n+m) time
	Slide 6: Generalization:  K-Connectivity
	Slide 7: Directed Graphs
	Slide 8: Testing if a graph is strongly connected
	Slide 9: Strongly Connected Components
	Slide 10: Strongly connected components can be found in O(n+m) time
	Slide 11: Topological Sort
	Slide 12: Find a topological order for the following graph
	Slide 13: If a graph has a cycle, there is no topological sort
	Slide 14: Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0
	Slide 15: Topological Sort Algorithm
	Slide 16: Details for O(n+m) implementation
	Slide 17: Stable Matching Results
	Slide 18: Coupon Collector Problem
	Slide 19: Stable Matching and Coupon Collecting

