# CSE 417 Algorithms and Complexity

Graph Algorithms Autumn 2024 Lecture 7

#### Announcements

- Reading
  - Chapter 3
  - Start on Chapter 4
    - Greedy Algorithms
- Homework 2

## Graph Connectivity

- An undirected graph is connected if there is a path between every pair of vertices x and y
- A connected component is a maximal connected subset of vertices

#### **Connected Components**

• Undirected Graphs



# Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

## Generalization: K-Connectivity

- An undirected graph is K-connected if every pair of distinct vertices is connected by at least K distinct paths
- Biconnected = 2-connected

### **Directed Graphs**

• A directed graph is strongly connected if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x



#### Testing if a graph is strongly connected

• Pick a vertex x

$$-S_1 = \{ y \mid path from x to y \}$$

$$-S_2 = \{ y \mid path from y to x \}$$

- If  $|S_1| = n$  and  $|S_2| = n$  then strongly connected

 Compute S<sub>2</sub> with a "Backwards BFS" – Reverse edges and compute a BFS

### **Strongly Connected Components**

A set of vertices C is a strongly connected component if C is a maximal strongly connected subgraph



# Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time
- S<sub>1</sub> = { y | path from v to y }
- S<sub>2</sub> = { y | path from y to v}
- SCC containing v is S<sub>1</sub> Intersect S<sub>2</sub>

## **Topological Sort**

• Given a set of tasks with precedence constraints, find a linear order of the tasks



# Find a topological order for the following graph



# If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge



Definition: A graph is Acyclic if it has no cycles

# Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
  - Pick a vertex  $v_1$ , if it has in-degree 0 then done
  - If not, let  $(v_2, v_1)$  be an edge, if  $v_2$  has in-degree 0 then done
  - If not, let  $(v_3, v_2)$  be an edge . . .
  - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

## **Topological Sort Algorithm**

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges



#### Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each

### **Stable Matching Results**

|                                              | n    | m-rank | w-rank |
|----------------------------------------------|------|--------|--------|
| <ul> <li>Averages of 5 runs</li> </ul>       | 500  | 5.10   | 98.05  |
|                                              | 500  | 7.52   | 66.95  |
| <ul> <li>Much better for M than W</li> </ul> | 500  | 8.57   | 58.18  |
|                                              | 500  | 6.32   | 75.87  |
| <ul> <li>Why is it better for M?</li> </ul>  | 500  | 5.25   | 90.73  |
|                                              | 500  | 6.55   | 77.95  |
|                                              | 1000 | 6.80   | 146.93 |
|                                              | 1000 | 6.50   | 154.71 |
|                                              | 1000 | 7.14   | 133.53 |
|                                              | 1000 | 7.44   | 128.96 |
| • What is the growth of m                    | 1000 | 7.36   | 137.85 |
| • What is the growth of the                  | 1000 | 7.04   | 140.40 |
| rank and w-rank as a                         | 2000 | 7.83   | 257.79 |
|                                              | 2000 | 7.50   | 263.78 |
| function of n?                               | 2000 | 11.42  | 175.17 |
|                                              | 2000 | 7.16   | 274.76 |
|                                              | 2000 | 7.54   | 261.60 |
|                                              | 2000 | 8.29   | 246.62 |

## **Coupon Collector Problem**

- n types of coupons
- Each round you receive a random coupon
- How many rounds until you have received all types of coupons
- p<sub>i</sub> is the probability of getting a new coupon after i-1 have been collected
- t<sub>i</sub> is the time to receive the i-th type of coupon after i-1 have been received

$$p_i=rac{n-(i-1)}{n}=rac{n-i+1}{n}$$

 $t_i$  has geometric distribution with expectation

$$egin{aligned} rac{1}{p_i} &= rac{n}{n-i+1} \ & \mathrm{E}(T) = \mathrm{E}(t_1+t_2+\dots+t_n) \ &= \mathrm{E}(t_1)+\mathrm{E}(t_2)+\dots+\mathrm{E}(t_n) \ &= rac{1}{p_1}+rac{1}{p_2}+\dots+rac{1}{p_n} \ &= rac{n}{n}+rac{n}{n-1}+\dots+rac{n}{1} \ &= n\cdot\left(rac{1}{1}+rac{1}{2}+\dots+rac{1}{n}
ight) \ &= n\cdot H_n. \end{aligned}$$

## Stable Matching and Coupon Collecting

- Assume random preference lists
- Runtime of algorithm determined by number of proposals until all w's are matched
- Each proposal can be viewed<sup>1</sup> as asking a random w
- Number of proposals corresponds to number of steps in coupon collector problem