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CSE 417
Algorithms and Complexity

Graphs and Graph Algorithms

Autumn 2024

Lecture 6
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Announcements

• Reading

– Chapter 3  

– Start on Chapter 4

• Homework 2
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Graph Theory

• G = (V, E)
– V:  vertices,  |V|= n

– E:  edges,  |E| = m 

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs

– Edges ordered pairs (u, v)

• Many other flavors

– Edge / vertices weights

– Parallel edges

– Self loops

• Path:  v1, v2, …, vk, with     (v i, v i+1) 
in E
– Simple Path

– Cycle

– Simple Cycle

• Neighborhood

– N(v)

• Distance

• Connectivity
– Undirected

– Directed (strong connectivity)

• Trees
– Rooted

– Unrooted
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Graph Representation
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V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }
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Incidence MatrixAdjacency List

O(n + m) space O(n2) space
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Implementation Issues

• Graph with n vertices, m edges

• Operations

– Lookup edge

– Add edge

– Enumeration edges

– Initialize graph

• Space requirements

5

Graph search

• Find a path from s to t

S = {s};  mark s

while S is not empty

u = Select(S)

if (u == t) then path found

foreach v in N(u)

if v is unmarked

mark v

Add(S, v)

Pred[v] = u
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Graph Search 

s

t
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Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s
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Breadth First Search

• Build a BFS tree from s
Initialize Level[v] = -1 for all v;

Q = {s}   

Level[s] = 1;

while Q is not empty

u = Q.Dequeue()

foreach v in N(u)

if (Level[v] == -1)

Q.Enqueue(v)  

Pred[v] = u

Level[v] = Level[u] + 1

9

Key observation

• All edges go between vertices on the same 
layer or adjacent layers
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Bipartite Graphs

• A graph V is bipartite if V can be partitioned 
into V1, V2 such that all  edges go between V1

and V2

• A graph is bipartite if it can be two colored
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Can this graph be two colored?
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Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the graph 
is bipartite

• If edge between two vertices of the same 
layer, then there is an odd cycle, and the 
graph is not bipartite
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Theorem: A graph is bipartite if and only if 
it has no odd cycles
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Lemma 1

• If a graph contains an odd cycle, it is not 
bipartite

15

Lemma 2

• If a BFS tree has an intra-level edge, then the 
graph has an odd length cycle

Intra-level edge: both end points are in the same level

16

Lemma 3

• If a graph has no odd length cycles, then it is 
bipartite
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Graph Search

• Data structure for next vertex to visit 
determines search order
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Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)
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Breadth First Search

• All edges go between vertices on the same 
layer or adjacent layers
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Depth First Search

• Each edge goes between 
vertices on the same 
branch

• No cross edges
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Connected Components

• Undirected Graphs
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Computing Connected Components in 
O(n+m) time

• A search algorithm from a vertex v can find all  
vertices in v’s component

• While there is an unvisited vertex v, search 
from v to find a new component
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Directed Graphs

• A Strongly Connected Component is a subset 
of the vertices with paths between every pair 
of vertices.
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Identify the Strongly Connected 
Components
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