
10/7/2024

1

CSE 417
Algorithms and Complexity

Graphs and Graph Algorithms

Autumn 2024

Lecture 6

1

Announcements

• Reading

– Chapter 3

– Start on Chapter 4

• Homework 2

2

Graph Theory

• G = (V, E)
– V: vertices, |V|= n

– E: edges, |E| = m

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs

– Edges ordered pairs (u, v)

• Many other flavors

– Edge / vertices weights

– Parallel edges

– Self loops

• Path: v1, v2, …, vk, with (v i, v i+1)
in E
– Simple Path

– Cycle

– Simple Cycle

• Neighborhood

– N(v)

• Distance

• Connectivity
– Undirected

– Directed (strong connectivity)

• Trees
– Rooted

– Unrooted

3

Graph Representation

a
b

c
d

V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }

a

b

c

d

b c d

a d

a

a b

1 1 1

1 0 1

1 0 0

1 1 0

Incidence MatrixAdjacency List

O(n + m) space O(n2) space

4

Implementation Issues

• Graph with n vertices, m edges

• Operations

– Lookup edge

– Add edge

– Enumeration edges

– Initialize graph

• Space requirements

5

Graph search

• Find a path from s to t

S = {s}; mark s

while S is not empty

u = Select(S)

if (u == t) then path found

foreach v in N(u)

if v is unmarked

mark v

Add(S, v)

Pred[v] = u

6

10/7/2024

2

Graph Search

s

t

7

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s

8

Breadth First Search

• Build a BFS tree from s
Initialize Level[v] = -1 for all v;

Q = {s}

Level[s] = 1;

while Q is not empty

u = Q.Dequeue()

foreach v in N(u)

if (Level[v] == -1)

Q.Enqueue(v)

Pred[v] = u

Level[v] = Level[u] + 1

9

Key observation

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7654

1

10

Bipartite Graphs

• A graph V is bipartite if V can be partitioned
into V1, V2 such that all edges go between V1

and V2

• A graph is bipartite if it can be two colored

11

Can this graph be two colored?

12

10/7/2024

3

Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the graph
is bipartite

• If edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite

13

Theorem: A graph is bipartite if and only if
it has no odd cycles

14

Lemma 1

• If a graph contains an odd cycle, it is not
bipartite

15

Lemma 2

• If a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points are in the same level

16

Lemma 3

• If a graph has no odd length cycles, then it is
bipartite

17

Graph Search

• Data structure for next vertex to visit
determines search order

18

10/7/2024

4

Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)

19

Breadth First Search

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7654

1

20

Depth First Search

• Each edge goes between
vertices on the same
branch

• No cross edges

1

2

5

6

12743

8 9

10 11

21

Connected Components

• Undirected Graphs

22

Computing Connected Components in
O(n+m) time

• A search algorithm from a vertex v can find all
vertices in v’s component

• While there is an unvisited vertex v, search
from v to find a new component

23

Directed Graphs

• A Strongly Connected Component is a subset
of the vertices with paths between every pair
of vertices.

24

10/7/2024

5

Identify the Strongly Connected
Components

25

