CSE 417
Algorithms and Complexity

Announcements

* Reading
— Chapter 3
— Start on Chapter 4

e Homework 2

Graph Theory

G=(V E) . !Dath: Vi, Vo, vy Vi, With (v, Viyq)
— V: vertices, |V]|=n e _
— Simple Path
— E: edges, [E| =m _ Ele
Undirected graphs — Simple Cycle
— Edges sets of two vertices {u,v} * Neighborhood
Directed graphs — N(v)
— Edges ordered pairs (u, v) * Distance
Many other flavors) Connec’F|V|ty
_ _ — Undirected
— Edge/ vertices weights — Directed (strong connectivity)
— Parallel edges e Trees
— Self loops — Rooted

— Unrooted

Graph Representation

O(n + m) space

a
C
» b C
» a » d
*I a
—* a " b
Adjacency List

V={a, b,c, d}

E ={{a, b}, {a c}, {a, d} {b,d}}

1111
1 0|1
1|0 0
1111]0

Incidence Matrix

O(n?) space

Implementation Issues

* Graph with n vertices, m edges

* Operations
— Lookup edge
— Add edge
— Enumeration edges
— Initialize graph

e Space requirements

Graph search

* Finda pathfromstot

S ={s}; marks
while S is not empty
u = Select(S)
if (u ==1) then path found
foreach v in N(u)
if vis unmarked
mark v
Add(S, v)
Pred[v] =u

Graph Search

N

Breadth first search

* Explore vertices in layers
—sin layer 1
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3. ..

Breadth First Search

e Build a BFS tree from s

Initialize Level[v] = -1 for all v;
Q = {s}
Level[s] = 1,
while Q is not empty
u = Q.Dequeue()
foreach v in N(u)
if (Level[v] ==-1)
Q.Enqueue(V)
Pred[v] = u

Level[v] = Level[u] + 1

Key observation

* All edges go between vertices on the same
layer or adjacent layers

10

Bipartite Graphs

 Agraph Vis bipartite if V can be partitioned
into V,, V, such that all edges go between V,
andV,

* Agraphis bipartite if it can be two colored

Can this graph be two colored?

Algorithm

Run BFS
Color odd layers red, even layers blue

If no edges between the same layer, the graph
IS bipartite
If edge between two vertices of the same

layer, then there is an odd cycle, and the
graph is not bipartite

Theorem: A graph is bipartite if and only if
it has no odd cycles

Lemma 1

* |f a graph contains an odd cycle, it is not
bipartite

Lemma 2

e |f a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

* |f a graph has no odd length cycles, then it is
bipartite

Graph Search

e Data structure for next vertex to visit
determines search order

Graph search

Breadth First Search
S = {s}
while S is not empty
u = Dequeue(S)
If uis unvisited
visit u
foreach v in N(u)

Enqueue(S, V)

Depth First Search

S = {s}
while S is not empty
u = Pop(S)

if uis unvisited
visit u
foreach v in N(u)
Push(S, v)

Breadth First Search

* All edges go between vertices on the same
layer or adjacent layers

20

Depth First Search

* Each edge goes between,”
vertices on the same |
branch

* No cross edges

21

Connected Components

 Undirected Graphs
O O &C ,

Computing Connected Components in
O(n+m) time
e Asearch algorithm from a vertex v can find all

vertices in v's component

 While there is an unvisited vertex v, search
from v to find a new component

Directed Graphs

e A Strongly Connected Componentis a subset
of the vertices with paths between every pair

of vertices.

ldentify the Strongly Connected
Components

