CSE 417 Algorithms and Complexity

Graphs and Graph Algorithms

Autumn 2024

Lecture 6

Announcements

- Reading
 - Chapter 3
 - Start on Chapter 4
- Homework 2

Graph Theory

- G = (V, E)
 - V: vertices, |V| = n
 - E: edges, |E| = m
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

- Path: v₁, v₂, ..., v_k, with (v_i, v_{i+1})
 in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - -N(v)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation

$$V = \{ a, b, c, d \}$$

$$E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}$$

	1	1	1
1		0	1
1	0		0

Adjacency List

O(n + m) space

Incidence Matrix

O(n²) space

Implementation Issues

- Graph with n vertices, m edges
- Operations
 - Lookup edge
 - Add edge
 - Enumeration edges
 - Initialize graph
- Space requirements

Graph search

Find a path from s to t

```
S = \{s\}; mark s
while S is not empty
         u = Select(S)
         if (u == t) then path found
         foreach v in N(u)
                  if v is unmarked
                            mark v
                            Add(S, v)
                            Pred[v] = u
```

Graph Search

Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Breadth First Search

Build a BFS tree from s

```
Initialize Level[v] = -1 for all v;
Q = \{s\}
Level[s] = 1;
while Q is not empty
         u = Q.Dequeue()
         foreach v in N(u)
                   if (Level[v] == -1)
                             Q.Enqueue(v)
                             Pred[v] = u
                             Level[v] = Level[u] + 1
```

Key observation

 All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1 , V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

 If a graph contains an odd cycle, it is not bipartite

Lemma 2

 If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

 If a graph has no odd length cycles, then it is bipartite

Graph Search

 Data structure for next vertex to visit determines search order

Graph search

```
Depth First Search
Breadth First Search
    S = \{s\}
                                                   S = \{s\}
    while S is not empty
                                                  while S is not empty
                                                       u = Pop(S)
         u = Dequeue(S)
                                                       if u is unvisited
         if u is unvisited
              visit u
                                                            visit u
              foreach v in N(u)
                                                            foreach v in N(u)
                   Enqueue(S, v)
                                                                 Push(S, v)
```

Breadth First Search

 All edges go between vertices on the same layer or adjacent layers

Depth First Search

- Each edge goes between,
 vertices on the same
 branch
- No cross edges

Connected Components

Undirected Graphs

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

