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Announcements

• HW 1 Due tonight on Gradescope,  turn in 

open until Sunday, 11:59 pm

– If you do not have access to Gradescope, let 

me know.

• HW 2 Available
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Worst Case Runtime Function

• Problem  P:  Given instance I compute a 

solution S

• A is an algorithm to solve P

• T(I) is the number of steps executed by A 

on instance I

• T(n) is the maximum of T(I) for all 

instances of size n
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Ignore constant factors

• Constant factors are arbitrary

– Depend on the implementation

– Depend on the details of the model

• Determining the constant factors is tedious 

and provides little insight

• Express run time as T(n) = O(f(n))
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Formalizing growth rates

• T(n) is O(f(n))               [T : Z+  → R+]

– If n is sufficiently large, T(n) is bounded by a 

constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

•  T(n) is (f(n))

– T(n) is at least a constant multiple of f(n)

– There exists an n0, and  > 0 such that       

T(n) > f(n) for all n > n0  

• T(n) is (f(n)) if T(n) is O(f(n)) and         

T(n) is (f(n)) 5



Efficient Algorithms

• Polynomial Time (P):  Class of all 

problems that can be solved with 

algorithms that have polynomial runtime 

functions

• Polynomial Time has been a very 

successful tool for theoretical computer 

science

• Problems in Polynomial Time often have 

practical solutions
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Graph Theory

• G = (V, E)
– V – vertices

– E – edges 

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights

– Parallel edges

– Self loops
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Definitions

• Path:  v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted
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Graph Representation
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V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }
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Implementation Issues

• Graph with n vertices, m edges

• Operations

– Lookup edge

– Add edge

– Enumeration edges

– Initialize graph

• Space requirements
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Graph search

• Find a path from s to t

S = {s}

while S is not empty

 u = Select(S)

 visit u

 foreach v in N(u)

  if v is unvisited

   Add(S, v)

   Pred[v] = u

  if (v = t) then path found
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Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s
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Key observation

• All edges go between vertices on the 

same layer or adjacent layers
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Bipartite Graphs

• A graph V is bipartite if V can be 

partitioned into V1, V2 such that all edges 

go between V1 and V2

• A graph is bipartite if it can be two colored
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Can this graph be two colored?
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Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the 

graph is bipartite

• If edge between two vertices of the same 

layer, then there is an odd cycle, and the 

graph is not bipartite
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