
CSE 417 Algorithms

Richard Anderson

Autumn 2024

Lecture 5

1

Announcements

• HW 1 Due tonight on Gradescope, turn in

open until Sunday, 11:59 pm

– If you do not have access to Gradescope, let

me know.

• HW 2 Available

2

Worst Case Runtime Function

• Problem P: Given instance I compute a

solution S

• A is an algorithm to solve P

• T(I) is the number of steps executed by A

on instance I

• T(n) is the maximum of T(I) for all

instances of size n

3

Ignore constant factors

• Constant factors are arbitrary

– Depend on the implementation

– Depend on the details of the model

• Determining the constant factors is tedious

and provides little insight

• Express run time as T(n) = O(f(n))

4

Formalizing growth rates

• T(n) is O(f(n)) [T : Z+ → R+]

– If n is sufficiently large, T(n) is bounded by a

constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is (f(n))

– T(n) is at least a constant multiple of f(n)

– There exists an n0, and > 0 such that

T(n) > f(n) for all n > n0

• T(n) is (f(n)) if T(n) is O(f(n)) and

T(n) is (f(n)) 5

Efficient Algorithms

• Polynomial Time (P): Class of all

problems that can be solved with

algorithms that have polynomial runtime

functions

• Polynomial Time has been a very

successful tool for theoretical computer

science

• Problems in Polynomial Time often have

practical solutions
6

Graph Theory

• G = (V, E)
– V – vertices

– E – edges

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights

– Parallel edges

– Self loops

7

Definitions

• Path: v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

8

Graph Representation

a
b

c
d

V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }

a

b

c

d

b c d

a d

a

a b

1 1 1

1 0 1

1 0 0

1 1 0

Incidence MatrixAdjacency List

9

Implementation Issues

• Graph with n vertices, m edges

• Operations

– Lookup edge

– Add edge

– Enumeration edges

– Initialize graph

• Space requirements

10

Graph search

• Find a path from s to t

S = {s}

while S is not empty

 u = Select(S)

 visit u

 foreach v in N(u)

 if v is unvisited

 Add(S, v)

 Pred[v] = u

 if (v = t) then path found
11

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s
12

Key observation

• All edges go between vertices on the

same layer or adjacent layers

2

8

3

7654

1

13

Bipartite Graphs

• A graph V is bipartite if V can be

partitioned into V1, V2 such that all edges

go between V1 and V2

• A graph is bipartite if it can be two colored

14

Can this graph be two colored?

15

Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the

graph is bipartite

• If edge between two vertices of the same

layer, then there is an odd cycle, and the

graph is not bipartite

16

	Slide 1: CSE 417 Algorithms
	Slide 2: Announcements
	Slide 3: Worst Case Runtime Function
	Slide 4: Ignore constant factors
	Slide 5: Formalizing growth rates
	Slide 6: Efficient Algorithms
	Slide 7: Graph Theory
	Slide 8: Definitions
	Slide 9: Graph Representation
	Slide 10: Implementation Issues
	Slide 11: Graph search
	Slide 12: Breadth first search
	Slide 13: Key observation
	Slide 14: Bipartite Graphs
	Slide 15: Can this graph be two colored?
	Slide 16: Algorithm

