10/4/24, 9:45 AM Lecture04

Lecture04

CSE 417 Algorithms

Richard Anderson
Autumn 2024
Lecture 4

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 119

10/4/24, 9:45 AM Lecture04

Announcements

+ Reading
— Chapter 2.1, 2.2
— Chapter 3 (Mostly review)
— Start on Chapter 4
- Homework Guidelines
— Submit homework with Gradescope

— Describing an algorithm

« Clarity is most important

+ Pseudocode generally preferable to just English
— Butsometimes both methods combined work best

— Prove that your algorithm works
« A proofis a "convincing argument”

— Give the run time for your algorithm
+ Justify that the algorithm satisfies the runtime bound

— You may lose points for style

— Homework assignments will (probably) be worth the same
amount

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html

2/19

10/4/24, 9:45 AM Lecture04

ozl TR
= 1\ \.::;; r
'_: _ - _H'v.] =

Five Problems ...

Scheduling sHatinnd
i ' i
ngh_ted Sche_dullng L
Bipartite Matching
Maximum Independent Set
Competitive Facility Location
3

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 3/19

10/4/24, 9:45 AM Lecture04

Summary — Five Problems

Scheduling

Weighted Scheduling
Combinatorial Optimization
Maximum Independent Set
Competitive Scheduling

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 4/19

10/4/24, 9:45 AM Lecture04

What does it mean for an algorithm

to be efficient?
MNAANS NS

{XVPJ@PJ_W\'& U'Ef__ /> L mat
Fodk ou Pt
Cir bl bale e

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 5/19

10/4/24, 9:45 AM Lecture04

Definitions of efficiency

* Fast in practice

* Qualitatively better worst case
performance than a brute force algorithm

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 6/19

10/4/24, 9:45 AM Lecture04

Polynomial time efficiency

« An algorithm is efficient if it has a
polynomial run time

* Run time as a function of problem size

— Run time: count number of instructions
executed on an underlying model of
computation

— T(n): maximum run time for all problems of
size at most n

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 7119

10/4/24, 9:45 AM Lecture04

Polynomial Time

« Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor

(depending on the algorithm) 2
Bl n\ 7N

Tl = oS

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 8/19

10/4/24, 9:45 AM Lecture04

Why Polynomial Time?

« Generally, polynomial time seems to
capture the algorithms which are efficient
In practice

* The class of polynomial time algorithms
has many good, mathematical properties

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html

9/19

10/4/24, 9:45 AM Lecture04

Polynomial vs. Exponential
Complexity

« Suppose you have an algorithm which take@
steps on a problem of size n

+ |f the algorithm takes one second for a problem
of size 10, estimate the run time for the following
problems sizes:

12 16 18 20

14
Len @R T G0y 20K 9%

10

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 10/19

10/4/24, 9:45 AM Lecture04

lgnoring constant factors

Express run time a
Emphasize algorithms-with-siower growth

rates

Fundamental idea in the study of
algorithms

Basis of Tarjan/Hopcroft Turing Award

11

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 11/19

10/4/24, 9:45 AM Lecture04

Why ignore constant factors?

« Constant factors are arbitrary
— Depend on the implementation
— Depend on the details of the model

« Determining the constant factors is tedious
and provides little insight

12

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 12/19

10/4/24, 9:45 AM Lecture04

Why emphasize growth rates?

The algorithm with the lower growth rate

will be faster for all but a finite number of
cases

* Performance is most important for larger
problem size

* As memory prices continue to fall, bigger
problem sizes become feasible

Improving growth rate often requires new
techniques

13

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 13/19

10/4/24, 9:45 AM Lecture04

Formalizing growth rates

+ T(n) is O(f(n)) [T:Z* > R*]
— If n Is sufficiently large, T(n) is bounded by a
constant multiple of f(n)

— Exist ¢, ng, such that for n > ng, T(n) < c f(n)

—————

« T(n) is O(f(n)) will be written as:

T(n) = O(f(n) T(n) e Ola)\

— Be careful with this notation

14

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 14/19

10/4/24, 9:45 AM

Prove 3n? + 5n + 20 is O(n?)

Letc=é
Letnﬂ=§

2,25 S t W ED N> n*
% 1%

T(n) is O(f(n)) if there exist ¢, ny, such that for n > n,
T(n) < ¢ f(n)

15

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.htm

10/4/24, 9:45 AM Lecture04

Order the following functions in
Increasing order by their growth rate

a) nlog“*n

b) 2n2 +AQA-

c) 2n/100

d) 1000n wlegfn
e) n1DD

fj 37
g) 1000 log'°n
h) n1f2

16

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 16/19

10/4/24, 9:45 AM Lecture04

Lower bounds
- =
+ T(n) is QF()) ot s QL)

— T(n) Is at least a constant multiple of f(n)

— There exists an ny, and € > 0 such that
T(n) > f(n) for all n > ng

« \Warning: definitions of €2 vary
Lo~ 1Y EF U\Z’B
* T(n)is ®(f(n)) if T(n) is O(f(n)) and
T(n) is Q(f(n))

17

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 17/19

10/4/24, 9:45 AM Lecture04
E:CULW;) = 3 w2

Useful Theofems "~

e If lim £ = ¢ for ¢ > O then f(n) = ®(g(n))

n—co g ('H.)

« Iff(n) is O(g(n)) and g(n) is O(h(n)) then
f(n) is O(h(n))

« Iff(n) is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))

18

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 18/19

10/4/24, 9:45 AM Lecture04

Ordering growth rates

s Forb>1andx >0
—logbn is O(nX)

* Forr>1andd>0
—ndis O(rM)

19

https://courses.cs.washington.edu/courses/cse417/24aul/lectures/Lecture04/Lecture04.html 19/19

