
10/1/2024

1

CSE 417 Algorithms

Richard Anderson

Autumn 2024

Lecture 4

1

Announcements

• Reading
– Chapter 2.1, 2.2

– Chapter 3 (Mostly review)

– Start on Chapter 4

• Homework Guidelines
– Submit homework with Gradescope

– Describing an algorithm
• Clarity is most important

• Pseudocode generally preferable to just English
– But sometimes both methods combined work best

– Prove that your algorithm works
• A proof is a “convincing argument”

– Give the run time for your algorithm
• Justify that the algorithm satisfies the runtime bound

– You may lose points for style

– Homework assignments will (probably) be worth the same
amount 2

Five Problems

Scheduling

Weighted Scheduling

Bipartite Matching

Maximum Independent Set

Competitive Facility Location

3

Summary – Five Problems

• Scheduling

• Weighted Scheduling

• Combinatorial Optimization

• Maximum Independent Set

• Competitive Scheduling

4

What does it mean for an algorithm

to be efficient?

5

Definitions of efficiency

• Fast in practice

• Qualitatively better worst case

performance than a brute force algorithm

6

1 2

3 4

5 6

10/1/2024

2

Polynomial time efficiency

• An algorithm is efficient if it has a

polynomial run time

• Run time as a function of problem size

– Run time: count number of instructions

executed on an underlying model of

computation

– T(n): maximum run time for all problems of

size at most n

7

Polynomial Time

• Algorithms with polynomial run time have

the property that increasing the problem

size by a constant factor increases the run

time by at most a constant factor

(depending on the algorithm)

8

Why Polynomial Time?

• Generally, polynomial time seems to

capture the algorithms which are efficient

in practice

• The class of polynomial time algorithms

has many good, mathematical properties

9

Polynomial vs. Exponential

Complexity

• Suppose you have an algorithm which takes n!

steps on a problem of size n

• If the algorithm takes one second for a problem

of size 10, estimate the run time for the following

problems sizes:

12 14 16 18 20

10

Ignoring constant factors

• Express run time as O(f(n))

• Emphasize algorithms with slower growth

rates

• Fundamental idea in the study of

algorithms

• Basis of Tarjan/Hopcroft Turing Award

11

Why ignore constant factors?

• Constant factors are arbitrary

– Depend on the implementation

– Depend on the details of the model

• Determining the constant factors is tedious

and provides little insight

12

7 8

9 10

11 12

10/1/2024

3

Why emphasize growth rates?

• The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

• Performance is most important for larger
problem size

• As memory prices continue to fall, bigger
problem sizes become feasible

• Improving growth rate often requires new
techniques

13

Formalizing growth rates

• T(n) is O(f(n)) [T : Z+ → R+]

– If n is sufficiently large, T(n) is bounded by a

constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:

T(n) = O(f(n))

– Be careful with this notation

14

Prove 3n2 + 5n + 20 is O(n2)

T(n) is O(f(n)) if there exist c, n0, such that for n > n0,

T(n) < c f(n)

Let c =

Let n0 =

15

Order the following functions in

increasing order by their growth rate

a) n log4n

b) 2n2 + 10n

c) 2n/100

d) 1000n + log8 n

e) n100

f) 3n

g) 1000 log10n

h) n1/2

16

Lower bounds

• T(n) is (f(n))

– T(n) is at least a constant multiple of f(n)

– There exists an n0, and  > 0 such that

T(n) > f(n) for all n > n0

• Warning: definitions of  vary

• T(n) is (f(n)) if T(n) is O(f(n)) and

T(n) is (f(n))

17

Useful Theorems

• If lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
 = c for c > 0 then f(n) = (g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then

f(n) is O(h(n))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then

f(n) + g(n) is O(h(n))

18

13 14

15 16

17 18

10/1/2024

4

Ordering growth rates

• For b > 1 and x > 0

– logbn is O(nx)

• For r > 1 and d > 0

– nd is O(rn)

19

19

	Slide 1: CSE 417 Algorithms
	Slide 2: Announcements
	Slide 3: Five Problems
	Slide 4: Summary – Five Problems
	Slide 5: What does it mean for an algorithm to be efficient?
	Slide 6: Definitions of efficiency
	Slide 7: Polynomial time efficiency
	Slide 8: Polynomial Time
	Slide 9: Why Polynomial Time?
	Slide 10: Polynomial vs. Exponential Complexity
	Slide 11: Ignoring constant factors
	Slide 12: Why ignore constant factors?
	Slide 13: Why emphasize growth rates?
	Slide 14: Formalizing growth rates
	Slide 15: Prove 3n2 + 5n + 20 is O(n2)
	Slide 16: Order the following functions in increasing order by their growth rate
	Slide 17: Lower bounds
	Slide 18: Useful Theorems
	Slide 19: Ordering growth rates

