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CSE 417 Algorithms

Richard Anderson

Autumn 2024

Lecture 4
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Announcements

• Reading
– Chapter 2.1, 2.2

– Chapter 3 (Mostly review)

– Start on Chapter 4

• Homework Guidelines
– Submit homework with Gradescope

– Describing an algorithm
• Clarity is most important

• Pseudocode generally preferable to just English
– But sometimes both methods combined work best

– Prove that your algorithm works
• A proof is a “convincing argument”

– Give the run time for your algorithm
• Justify that the algorithm satisfies the runtime bound

– You may lose points for style

– Homework assignments will (probably) be worth the same 
amount 2

Five Problems

Scheduling

Weighted Scheduling

Bipartite Matching

Maximum Independent Set

Competitive Facility Location
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Summary – Five Problems

• Scheduling

• Weighted Scheduling

• Combinatorial Optimization

• Maximum Independent Set

• Competitive Scheduling
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What does it mean for an algorithm 

to be efficient?
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Definitions of efficiency

• Fast in practice

• Qualitatively better worst case 

performance than a brute force algorithm
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Polynomial time efficiency

• An algorithm is efficient if it has a 

polynomial run time

• Run time as a function of problem size

– Run time: count number of instructions 

executed on an underlying model of 

computation

– T(n): maximum run time for all problems of 

size at most n
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Polynomial Time

• Algorithms with polynomial run time have 

the property that increasing the problem 

size by a constant factor increases the run 

time by at most a constant factor 

(depending on the algorithm)
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Why Polynomial Time?

• Generally, polynomial time seems to 

capture the algorithms which are efficient 

in practice

• The class of polynomial time algorithms 

has many good, mathematical properties
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Polynomial vs. Exponential 

Complexity

• Suppose you have an algorithm which takes n! 

steps on a problem of size n

• If the algorithm takes one second for a problem 

of size 10, estimate the run time for the following 

problems sizes:

12             14              16               18             20
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Ignoring constant factors

• Express run time as O(f(n))

• Emphasize algorithms with slower growth 

rates

• Fundamental idea in the study of 

algorithms

• Basis of Tarjan/Hopcroft Turing Award
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Why ignore constant factors?

• Constant factors are arbitrary

– Depend on the implementation

– Depend on the details of the model

• Determining the constant factors is tedious 

and provides little insight
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Why emphasize growth rates?

• The algorithm with the lower growth rate 
will be faster for all but a finite number of 
cases

• Performance is most important for larger 
problem size

• As memory prices continue to fall, bigger 
problem sizes become feasible

• Improving growth rate often requires new 
techniques
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Formalizing growth rates

• T(n) is O(f(n))               [T : Z+  → R+]

– If n is sufficiently large, T(n) is bounded by a 

constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:              

T(n) = O(f(n))

– Be careful with this notation
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Prove 3n2 + 5n + 20 is O(n2)

T(n) is O(f(n)) if there exist c, n0, such that for n > n0,         

T(n) < c f(n)

Let c = 

Let n0 = 
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Order the following functions in 

increasing order by their growth rate

a) n log4n

b) 2n2 + 10n

c) 2n/100

d) 1000n + log8 n

e) n100

f) 3n

g) 1000 log10n

h) n1/2
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Lower bounds

• T(n) is (f(n))

– T(n) is at least a constant multiple of f(n)

– There exists an n0, and  > 0 such that       

T(n) > f(n) for all n > n0

• Warning: definitions of  vary

• T(n) is (f(n)) if T(n) is O(f(n)) and         

T(n) is (f(n))
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Useful Theorems

• If lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
 = c for c > 0 then f(n) = (g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then     

f(n) is O(h(n))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then 

f(n) + g(n) is O(h(n))
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Ordering growth rates

• For b > 1 and x > 0

– logbn is O(nx)

• For r > 1 and d > 0

– nd is O(rn)
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