Lecture01

CSE 417 Algorithms and Computational Complexity

Richard Anderson Autumn 2024 Lecture 1

CSE 417 Course Introduction

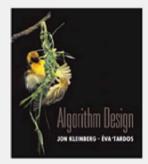
- CSE 417, Algorithms and Computational Complexity
 - MWF 10:30-11:20 AM
 - CSE2 G10
- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - Office hours: Monday 2:00-3:00 pm, Wednesday 3:00-4:00 pm, CSE2 344
- Teaching Assistants
 - Ananditha Raghunath, Kaiyuan Liu, Vinay Pritamani, Siddanth Varanasi

Announcements

- It's on the course website
 - https://courses.cs.washington.edu/courses/cse417/24au/
- Homework weekly
 - Usually due Fridays
 - HW 1, Due Friday, October 4.
 - It's on the website
- Homework is to be submitted electronically
 - Due at 11:59 pm, Fridays. Five late days.
- Edstern Discussion Board

Textbook

- Algorithm Design
- Jon Kleinberg, Eva Tardos
 - Only one edition
- Read Chapters 1 & 2
- Expected coverage:
 - Chapter 1 through 7
- Book available at:
 - Ebay (\$13.62 to \$229.94)
 - Amazon (\$108.99/\$30.60)
 - PDF



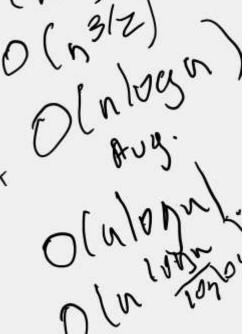
Course Mechanics

- Homework
 - Due Fridays
 - Mix of written problems and programming
 - Target: 1-week turnaround on grading
- Exams
 - Midterm, Friday, November 1
 - Final, Monday, December 9, 8:30-10:20 AM
 - Approximate grade weighting:
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts, Discussion Board
- Canvas
 - Panopto videos

All of Computer Science is the Study of Algorithms

How to study algorithms

- Zoology
- · Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking
- Algorithm practice



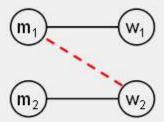
Introductory Problem: Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes

• E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- Perfect matching
- Ranked preference lists
- Stability



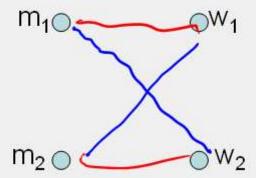
Example (1 of 3)

m₁: w₁ w₂

m₂: W₂ W₁

w₁: m₁ m₂

w₂: m₂ m₁



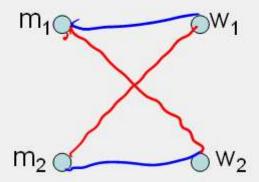
Example (2 of 3)

m₁: w₁ w₂

m₂: w₁ w₂

w₁: m₁ m₂

w₂: m₁ m₂



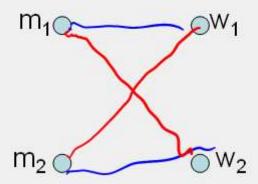
Example (3 of 3)

m₁: w₁ w₂

m₂: W₂ W₁

 $w_1: m_2 m_1$

w₂: m₁ m₂



Formal Problem

Input

- Preference lists for m₁, m₂, ..., m_n
- Preference lists for w₁, w₂, ..., w_n

Output

 Perfect matching M satisfying stability property:

If $(m', w') \in M$ and $(m'', w'') \in M$ then (m') prefers w' to w'') or (w'') prefers m'' to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m2 w accepts m, dumping m2

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w) else

> suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

Example

 m_1 : $w_1 w_2 w_3$

 m_{10}

 \bigcirc W₁

 m_2 : $w_1 w_3 w_2$

 m_3 : $w_1 w_2 w_3$

 $m_2 \bigcirc$

W₂

w₁: m₂ m₃ m₁

w₂: m₃ m₁ m₂

w₃: m₃ m₁ m₂

 $m_3 \bigcirc$

 \bigcirc W₃

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

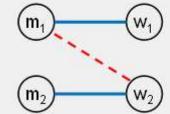
Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$$(m_1, w_1) \in M$$
, $(m_2, w_2) \in M$
 m_1 prefers w_2 to w_1



How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists