CSE 417 Algorithms and Computational Complexity Richard Anderson Autumn 2024 Lecture 1 #### **CSE 417 Course Introduction** - CSE 417, Algorithms and Computational Complexity - MWF 10:30-11:20 AM - CSE2 G10 - Instructor - Richard Anderson, anderson@cs.washington.edu - Office hours: - Office hours: Monday 2:00-3:00 pm, Wednesday 3:00-4:00 pm, CSE2 344 - Teaching Assistants - Ananditha Raghunath, Kaiyuan Liu, Vinay Pritamani, Siddanth Varanasi #### **Announcements** - · It's on the course website - https://courses.cs.washington.edu/courses/cse417/24au/ - · Homework weekly - Usually due Fridays - HW 1, Due Friday, October 4. - It's on the website - Homework is to be submitted electronically - Due at 11:59 pm, Fridays. Five late days. - · Edstem Discussion Board #### **Textbook** - · Algorithm Design - Jon Kleinberg, Eva Tardos - Only one edition - Read Chapters 1 & 2 - · Expected coverage: - Chapter 1 through 7 - · Book available at: - Ebay (\$13.62 to \$229.94) - Amazon (\$108.99/\$30.60) - PDF #### Course Mechanics - Homework - Due Fridays - Mix of written problems and programming - Target: 1-week turnaround on grading - Exams - Midterm, Friday, November 1 - Final, Monday, December 9, 8:30-10:20 AM - Approximate grade weighting: HW: 50, MT: 15, Final: 35 - - Slides, Handouts, Discussion Board - Canvas - Panopto videos # All of Computer Science is the Study of Algorithms # How to study algorithms - Zoology - · Mine is faster than yours is - · Algorithmic ideas - Where algorithms apply - What makes an algorithm work - Algorithmic thinking - · Algorithm practice # Introductory Problem: Stable Matching - · Setting: - Assign TAs to Instructors - Avoid having TAs and Instructors wanting changes - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor. #### Formal notions - · Perfect matching - · Ranked preference lists - Stability ## Example (1 of 3) m_1 : $w_1 \ w_2$ m_1 ov_1 m_2 : $w_2 \ w_1$ w_1 : $m_1 \ m_2$ v_2 : $m_2 \ m_1$ m_2 ov_2 ov_3 # Example (2 of 3) $m_1: w_1 \ w_2 \ m_1 \odot \ ow_1 \ m_2: w_1 \ w_2 \ w_1: m_1 \ m_2 \ w_2: m_1 \ m_2 \ ow_2$ ### Example (3 of 3) #### Formal Problem - Input - Preference lists for m₁, m₂, ..., m_n - Preference lists for w₁, w₂, ..., w_n - Output - Perfect matching M satisfying stability property: If $(m', w') \in M$ and $(m", w") \in M$ then (m') prefers w' to w") or (w'') prefers m" to m') ### Idea for an Algorithm m proposes to w If w is unmatched, w accepts If w is matched to m₂ If w prefers m to m_2 w accepts m, dumping m_2 If w prefers m_2 to m, w rejects m Unmatched m proposes to the highest w on its preference list that it has not already proposed to ### Algorithm Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w) suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w) #### Example | m ₁ : w ₁ w ₂ w ₃ | m_1 | \bigcirc W ₁ | |---|----------------|---------------------------| | m ₂ : w ₁ w ₃ w ₂ | | | | m ₃ : w ₁ w ₂ w ₃ | | | | | $m_2 \bigcirc$ | \bigcirc W ₂ | | w ₁ : m ₂ m ₃ m ₁ | | | | w ₂ : m ₃ m ₁ m ₂ | | | | w ₃ : m ₃ m ₁ m ₂ | $m_3 \bigcirc$ | \bigcirc W ₃ | #### Does this work? - · Does it terminate? - Is the result a stable matching? - Begin by identifying invariants and measures of progress - m's proposals get worse (have higher m-rank) - Once w is matched, w stays matched - w's partners get better (have lower w-rank) Claim: If an m reaches the end of its list, then all the w's are matched Claim: The algorithm stops in at most n² steps # When the algorithms halts, every w is matched Why? Hence, the algorithm finds a perfect matching # The resulting matching is stable #### Suppose $\begin{array}{l} (m_1,\,w_1) \,\in\, M,\, (m_2,\,w_2) \,\in\, M \\ m_1 \mbox{ prefers } w_2 \mbox{ to } w_1 \end{array}$ How could this happen? #### Result - Simple, O(n²) algorithm to compute a stable matching - Corollary - A stable matching always exists