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Turn in instructions: Submit a PDF on Gradescope with each problem on a separate page.

Problem 1 (10 points):

Let S be a set of intervals, where S = {I1, . . . , In} with Ij = (sj , fj) and sj < fj . A set of points
P = {p1, . . . , pk} is said to be a cover for S if every interval of S includes at least one point of P ,
or more formally: for every Ii in S, there is a pj in P with si ≤ pj ≤ fi.

Describe an algorithm that finds a cover for S that is as small as possible. Argue that your algorithm
finds a minimum size cover. You algorithm should be efficient. In this case O(n log n) is achievable
(or even O(n) assuming the input has been sorted by finishing time), but it is okay if your algorithm
is O(n2).

You may assume that the intervals are sorted in order of finishing time.

Problem 2 (10 points):

The paragraphing problem is: Given a set of words w1, . . . , wn with word lengths l1, . . . , ln, break
the words into consecutive groups, such that the sum of the lengths of the words in each group is
less than a fixed value K. (We will ignore the issue of putting spaces between words or hyphenation;
these are minor details.) The words remain in the original order, so the task is just to insert line
breaks to ensure that each line is less than length K.

Describe a greedy algorithm for paragraphing that attempts pack in as many words as possible
into each line, e.g., to put words into a line one at a time until the length bound K is reached, and
break the line before the word wr that caused the the bound to be exceeded.

Is your algorithm optimal, in the sense that it minimizes the total number of lines of output? Why
or why not. If you think it is optimal, given an explanation of why (we will be looking for the
general idea as opposed to a formal proof.) If it is not, give a counter example.

Problem 3 (10 points):

Here is another version of the homework scheduling problem with partial credit. Suppose that you
have a collection of homework assignments {H1, . . . ,Hk}. Assignment Hj has a time requirement
tj and a value pj . If you spend less time on an assignment than required, you will get partial
credit that it proportional to the time spent on it. So if you spend time t on assignment Hj , where
0 ≤ t ≤ tj you will received t

tj
pj points.

You have total time T available for homework, and, unfortunately, T <
∑

j tj . You want to
maximize the points for the assignments that you either complete or get partial credit on, so you
need to come up with an algorithm for allocating your time on the assignments.



Argue that there is an optimal solution where only one assignment gets partial credit. (Partial
credit on assignment Hj means getting p points on Hj , where 0 < p < pj .)

Describe an algorithm that finds an optimal solution to the problem, which maximizes the number
of points you receive on homework, subject to the constraint that the time spent is at most T .
Give a justification as to why your algorithm finds an optimal solution. You should also give the
run time for your algorithm.

Note: For this problem, it is critical that partial credit is allowed, as otherwise it is NP-Complete.
More on that later in the course.

Problem 4 (10 points):

Let G = (V,E) be a directed graph with lengths assigned to the edges. Let δ(u, v) denote the
shortest path distance from u to v. Show that for all vertices u, v, w ∈ V :

δ(u,w) ≤ δ(u, v) + δ(v, w).

You may assume that the graph is strongly connected, so that there is a path between every pair
of vertices.

Problem 5 (10 points):

Implement the greedy algorithm for graph coloring discussed in class (Lecture 9, Slides 7 to 11, al-
though I think some slides were skipped). Run the algorithm on random graphs using the generator
you created in HW3. Use values of n of 1000 (or larger). You should report results for values of p
in the range 0.002 and 0.02. How many colors are needed on the average? Since you are generating
random graphs, taking several graphs with the same value of p will give more interesting results.
Averaging over 10 graphs (per value of p) is probably sufficient. Compare the performance of three
different versions of the algorithm.

1. Choose the smallest unused color (Slide 10)

2. Process the vertices in increasing degree, using smallest unused color.

3. Process the vertices in decreasing degree, using smallest unused color


