CSE 417
Algorithms and Complexity
Winter 2023
Lecture 25
NP-Completeness, Part III
Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, March 13, 8:30 AM

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri, March 3</td>
<td>NP-Completeness: Overview, Definitions</td>
</tr>
<tr>
<td>Mon, March 6</td>
<td>NP-Completeness: Reductions</td>
</tr>
<tr>
<td>Wed, March 8</td>
<td>NP-Completeness: Problem Survey</td>
</tr>
<tr>
<td>Fri, March 10</td>
<td>Theory and Beyond NP-Completeness</td>
</tr>
<tr>
<td>Mon, March 13</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>
NP Completeness: The story so far

Circuit Satisfiability is NP-Complete

There are a whole bunch of other important problems which are NP-Complete
Cook’s Theorem

• Definition:
 – X is NP-Complete if:
 • X is in NP
 • For all Z in NP: \(Z \leq_P X \)

• There is an NP Complete problem
 – The Circuit Satisfiability Problem
Populating the NP-Completeness Universe

- Circuit Sat \leq_p 3-SAT
- 3-SAT \leq_p Independent Set
- 3-SAT \leq_p Vertex Cover
- Independent Set \leq_p Clique
- 3-SAT \leq_p Hamiltonian Circuit
- Hamiltonian Circuit \leq_p Traveling Salesman
- 3-SAT \leq_p Integer Linear Programming
- 3-SAT \leq_p Graph Coloring
- 3-SAT \leq_p 3 Dimensional Matching
- 3-SAT \leq_p Subset Sum
- Subset Sum \leq_p Scheduling with Release times and deadlines
Satisfiability

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form: A propositional formula \(\Phi \) that is the conjunction of clauses.

SAT: Given CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex: \((\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \)

Yes: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false} \).
Matching

Two dimensional matching

Three dimensional matching (3DM)
Augmenting Path Algorithm for Matching

Find augmenting path in $O(m)$ time
n phases of augmentation
$O(nm)$ time algorithm for matching
3-SAT \leq_p 3DM

Truth Setting Gadget

X True

X False

3/8/2023
CSE 417
3-SAT \leq_p 3DM

Clause gadget for (\overline{X} OR Y OR Z)

Garbage Collection Gadget
(Many copies)
Exact Cover (sets of size 3) XC3

Given a collection of sets of size 3 of a domain of size 3N, is there a sub-collection of N sets that cover the sets

(A, B, C), (D, E, F), (A, B, G),
(A, C, I), (B, E, G), (A, G, I),
(B, D, F), (C, E, I), (C, D, H),
(D, G, I), (D, F, H), (E, H, I),
(F, G, H), (F, H, I)

3DM \leq_p XC3
Graph Coloring

- NP-Complete
 - Graph K-coloring
 - Graph 3-coloring

- Polynomial
 - Graph 2-Coloring
3-SAT \leq_p 3 Colorability

Truth Setting Gadget

Clause Testing Gadget
(Can be colored if at least one input is T)
Number Problems

• Subset sum problem
 – Given natural numbers w_1, \ldots, w_n and a target number W, is there a subset that adds up to exactly W?

• Subset sum problem is NP-Complete
• Subset Sum problem can be solved in $O(nW)$ time
XC3 \leq_p SUBSET SUM

Idea: Represent each set as a large integer, where the element x_i is encoded as D^i where D is an integer

$$\{x_3, x_5, x_9\} \Rightarrow D^3 + D^5 + D^9$$

Does there exist a subset that sums to exactly $D^1 + D^2 + D^3 + \ldots + D^{n-1} + D^n$

Detail: How large is D? We need to make sure that we do not have any carries, so we can choose $D = m+1$, where m is the number of sets.
Integer Linear Programming

- Linear Programming – maximize a linear function subject to linear constraints
- Integer Linear Programming – require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for x_i’s

Constraint for clause: $\left(x_1 \lor \overline{x_2} \lor \overline{x_2}\right)$

$$x_1 + (1 - x_2) + (1-x_3) > 0$$
Scheduling with release times and deadlines (RD-Sched)

• Tasks, \{t_1, t_2, \ldots, t_n\}
• Task \(t_j \) has a length \(l_j \), release time \(r_j \) and deadline \(d_j \)
• Once a task is started, it is worked on without interruption until it is completed
• Can all tasks be completed satisfying constraints?
Subset Sum \leq_P RD-Sched

- Subset Sum Problem
 - $\{s_1, s_2, \ldots, s_N\}$, integer K_1
 - Does there exist a subset that sums to K_1?
 - Assume the total sums to K_2
Reduction

- Tasks \(\{ t_1, t_2, \ldots, t_N, x \} \)
- \(t_j \) has length \(s_j \), release 0, deadline \(K_2 + 1 \)
- \(x \) has length 1, release \(K_1 \), deadline \(K_1 + 1 \)
Friday: NP-Completeness and Beyond!