Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Median (Selection)
 - Fast Matrix Multiplication
 - Counting Inversions (5.3)
 - Multiplication (5.5)
Divide and Conquer: Merge Sort

Array MSort(Array a, int n){
 if (n <= 1) return a;
 return Merge(MSort(a[0 .. n/2], n/2), MSort(a[n/2+1 .. n-1], n/2));
}

T(n) = 2T(n/2) + n; T(1) = 1;
Unrolling the recurrence
A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge
Unroll recurrence for $T(n) = 3T(n/3) + n$
\[T(n) = aT(n/b) + f(n) \]
T(n) = T(n/2) + cn

Where does this recurrence arise?
Solving the recurrence exactly
T(n) = 4T(n/2) + n

\[
\sum_{k=0}^{\log n} 2^k n = (2n - 1) n
\]

Total Work
T(n) = 2T(n/2) + n^2
\[T(n) = 2T(n/2) + n^{1/2} \]
Recurrences

• Three basic behaviors
 – Dominated by initial case
 – Dominated by base case
 – All cases equal – we care about the depth
What you really need to know about recurrences

• Work per level changes geometrically with the level
• Geometrically increasing \((x > 1)\)
 – The bottom level wins
• Geometrically decreasing \((x < 1)\)
 – The top level wins
• Balanced \((x = 1)\)
 – Equal contribution
Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n) = n + 5T(n/8)$
- $T(n) = n + 9T(n/8)$
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$
Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:
\[
\begin{pmatrix}
 r & s \\
 t & u \\
\end{pmatrix}
= \begin{pmatrix}
 a & b \\
 c & d \\
\end{pmatrix}
\begin{pmatrix}
 e & g \\
 f & h \\
\end{pmatrix}
\]

- \(r = ae + bf \)
- \(s = ag + bh \)
- \(t = ce + df \)
- \(u = cg + dh \)

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are \((N/2) \times (N/2)\) matrices.

The recursive matrix multiplication algorithm recursively multiplies the \((N/2) \times (N/2)\) matrices and combines them using the equations for multiplying 2 x 2 matrices.
Recursive Matrix Multiplication

• How many recursive calls are made at each level?

• How much work in combining the results?

• What is the recurrence?
What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:
Strassen’s Algorithm

Multiply 2 x 2 Matrices:

\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix} = \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} \begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

\[
 r = p_1 + p_2 - p_4 + p_6 \\
 s = p_4 + p_5 \\
 t = p_6 + p_7 \\
 u = p_2 - p_3 + p_5 - p_7
\]

Where:

\[
 p_1 = (b - d)(f + h) \\
 p_2 = (a + d)(e + h) \\
 p_3 = (a - c)(e + g) \\
 p_4 = (a + b)h \\
 p_5 = a(g - h) \\
 p_6 = d(f - e) \\
 p_7 = (c + d)e
\]

From AHU 1974
Recurrence for Strassen’s Algorithms

- $T(n) = 7 \ T(n/2) + cn^2$
- What is the runtime?

$\log_2 7 = 2.8073549221$
BFPRT Recurrence

\[T(n) \leq T(3n/4) + T(n/5) + 20 n \]

What bound do you expect?